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i.INTRODUCTION 

Software development on virtual platforms is becoming ubiquitous but requires very high performance. Today’s 
Just In Time [8,12] simulation technologies are struggling to keep up with the demands on performance. For 
instance, the development of autonomous driving is currently expected to consume a massive amount of simulation, 
both ‘desktop’ use cases (developers using simulated environments to develop their code), and massive ‘cloud’ 
deployment for continuous integration and test.  

At the same time, high performance hosts that have (specifically) Arm® architecture1 based hardware are now 
commonplace. This raises the possibility of using the host to accelerate the virtual platform: execute the guest 
software directly on that host. But this must work from (secure) boot code through to user applications.  

Hypervisor technologies such as KVM [1] are often proposed to provide better emulator performance, but they 
are primarily designed to run, in guaranteed isolation, “neutral” virtual platforms on a single physical system. The 
cloud providers are leveraging this capability to sell more virtual core count than they have physically. In effect 
this is the opposite of what's required for simulation of a hardware model. The virtualization environment should 
expose a specific machine to its guest, with no isolation, while running on a “neutral” host, effectively leveraging 
a hypervisor in a “reverse way”. But current hypervisors are not designed to addressing all the simulation needs:  

● Not made for “bare metal” execution – for secure firmware [2] running at “Exception Level 3” on Arm 
microprocessors which limits the ability to model large software stacks that themselves include a 
hypervisor (particularly for Software Defined Vehicles). 

● Incomplete – Not allowing to simulate Cortex-A and Cortex-M that share memory and a device bus; or 
implement architectural extensions such as the “auxiliary registers” that are implementation dependent. 

In this paper we provide details on using a simulation oriented Virtual Machine Monitor that reverses the role 
of the supporting hypervisor to provide game changer performance enhancements to virtual hardware models. 

 

ii.TOOLS & TECHNOLOGIES LANDSCAPE 

A. Technologies preamble 
The word “hypervisor” can be used to designate a variety of functional blocks. In this paper, the hypervisor is 

the code that controls processor facilities at the lowest level to create virtual cores and deal with memory 
translations. A Virtual Machine Monitor (VMM) complements the hypervisor with virtual devices and can be 

 
1 Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere  
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inserted in the memory map to deal with specific devices or to it can be used to handle situations such as unknown 
instructions. 

Note: The VMM should not be confused with Virtual Machine Management tools such as virt-manager [3] 
which are administrator tools to deal with a single VM configuration or many VMs. 

Hence, in this context, Linux KVM privileged code is composed of a hypervisor (running at Exception Level 2 
on Arm architecture) and in-kernel partial VMM (providing virtual GIC for instance). This in-kernel VMM is 
usually controlled by a user-land VMM such as kvmtool [4] or Firecracker [5] that provide virtual devices (virtio 
devices, emulated devices such as PL011 UART). The MacOS Hypervisor Framework (HVF) [6] is another 
example of a hypervisor supported on Apple silicon. Contrary to KVM, HVF does not offer any VMM service and 
limits itself to hypervisor functional control. The Apple provided VMM, which could be considered as the 
equivalent of KVM in-kernel VMM and Kvmtool is called the MacOS Virtualization Framework [7]. 

B. Existing tools 
1) Fast Models & Fixed Virtual Platforms 

Fast Models [8] are Arm technology that represents accurate, flexible programmer's view of Arm 
microprocessors, allowing users to develop software such as drivers, firmware, OS, and applications prior to silicon 
availability. They allow full control over the simulation, including profiling, debug, and trace. Fast Models can be 
exported to SystemC and TLM 2.0, allowing integration into the wider SoC design process. They are based on a 
Just In Time simulation technology, which suffers from performance limitations. 

Fixed Virtual Platforms [9] are built on top of Fast Models and provide developers ready-to-use model of a 
complete “neutral” Arm-based architecture system. 

Performance of these models depends on the guest and host, but it can be that a minute of CPU time may take 
an hour of wall clock time to complete in a complex virtual machine. 

1) Corellium Virtual Hardware Platform 

Corellium VHP [10] is a VMM built on top of a proprietary hypervisor: Charm. The main focus of the platform 
is to simulate mobile devices and provide very rich tooling to exercise devices like GPS and many other sensors. 

The public information is unclear about Charm’s capabilities with respect to EL3 firmware support and 
unimplemented instructions for instance. So, it is not possible to assess whether the solution is suited to simulate 
the heterogeneous hardware models needed for complex industrial and automotive applications. 

2) Arm Virtual Hardware 

According to Fierce Electronics [11], Arm Virtual Hardware service is derived from Corellium. Several boards 
are emulated but Emulation may be partial. For instance, the RPI4 model does not offer GPU emulation. At this 
moment it is not possible to assess whether Virtual Hardware allows development of end-to-end stacks, from secure 
firmware up to application, on heterogeneous hardware models and the accuracy of the modeling. 

3) Qemu 

Qemu [12] is an emulator that can run binary programs, including operating systems, made for a processor 
architecture on an entirely different architecture. It does so by translating target instructions into native instructions 
on the fly (A just-in-time compiler). Qemu can also leverage KVM and HVF but, doing so, Qemu loses its 
architectural emulation capabilities ant thus it is not possible to: 

• select a processor and its features (it is limited to the host processor) 
• choose a Arm Generic Interrupt Controller implementation  
• run secure code in Arm TrustZone 

Qemu refers to KVM and HVF as “accelerators”, but this is not quite correct as they bring with them specific 
restrictions on the way in which Qemu behaves. Others are working on ways to combine accelerators and the JIT 
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engine itself to overcome some of these restrictions, specifically to allow e.g., EL3 code to execute in the JIT while 
an accelerator such as HVF or KVM can be used for the EL2/EL1 code. This ‘hybrid’ approach is interesting but 
may suffer from some performance penalties when switching occurs because of state management costs between 
JIT and non-JIT. In addition, the number of switches may become overwhelmingly high as, in some situations, 
application related IRQs must be routed to EL3. Furthermore, simulation of MPAM features on non MPAM host 
processors would trigger the JIT for the whole solution and thus the scope of JIT may not be just contained to the 
secure world.  

In the approach we are taking, while topologically very similar, rather than use a full JIT engine and ‘switching’ to 
perform EL3, we are proposing a very light weight emulation of processor features and the secure switch itself and 
then using the host core to directly execute the rest of the processor behavior. 

 

iii.EMULA4 

A. Overview 
Emula4 is a new type of VMM that allows the creation of virtual hardware models based on existing or future 

Arm architecture based heterogeneous platforms. Those virtual hardware models can run software stacks at wall 
clock speed. It is using the “reverse hypervisor” concept to support simulation of architectural extensions, platform 
micro-controllers, accelerators, and interconnects.  

Emula4 intends to be a generic framework to allow hardware providers (silicon and board makers) to provide 
their customers with virtual models of their own hardware. Emula4 ambition is also to empower those customers 
to assemble and test virtual hardware models of their choice without changes of the main Emula4 software. 

Emula4 allows running firmware/software at any Exception Levels and thus allows execution of Trusted 
Firmware and OP-TEE in the VM at close to native speeds. 

Emulation is done such that silicon vendor extensions are usable by the virtual hardware model software stack. 
In a similar way, a program made for Arm architecture version 8.6 can run on an Arm architecture version 8.1 as 
close as possible to the intended behavior. There are still limitations, for instance, it will not be possible to run a 
debug program that makes use of 32 hardware debug registers on a processor that has only 6 (it should be possible 
though to run it if it makes use of 6 out of 32). Equally, while it is possible to simulate MPAM access control on 
cores that are not MPAM capable, it is not a goal to try to simulate memory bandwidth measurement and control 
of MPAM (yet performance monitors may allow a close enough implementation). 

To enable user-level composition, Emula4 makes use of System Device Trees [13] concepts to describe the 
whole system so that individual subsystems can be given a relevant device tree thanks to the lopper tool [14]. This 
methodology is in line with the Arm specification System Ready [15] standard that intends to decouple device trees 
from software stacks and associate them more closely with hardware. 

B. Reverse mode capable hypervisors 
To be used according to the reverse hypervisor concepts, a hypervisor needs to offer sufficient control on what 

the VMM is capable of intercepting, or, in other words, what exits are possible from the VM. In that respect, MacOS 
HVF is offering an effective interface to leverage processor trapping capabilities as HVF is only a hypervisor. 
However, it does not support all Arm architecture fine grain control of instruction trapping such as trapping on read 
of memory management registers. Linux KVM is both a hypervisor and in-kernel VMM and, as such, it deals 
directly with elements such as the GIC for instance. In doing so, it prevents the simulation framework (in user 
space) from providing its own “GIC” (or, indeed, other features). While providing a secure GIC implementation is 
a valuable capability in the context of cloud virtualization, it prevents a simulation oriented VMM from fully 
controlling the details of the virtual hardware model. Because of this, upstream KVM cannot be used as a reverse 
hypervisor.  
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C. Interception: an extension of virtualization “exit” 
Processor virtualization implements “exit mechanisms” to inform the VMM that it needs to handle a situation. 

Currently, the Arm architecture does not allow the VMM to “exit” on everything that a emulator would like. For 
instance, there are no means to trigger “exits” when the current Exception Level register is red. Some “exits” such 
as reading VBAR register (at any level) is only defined on newer processor specifications but are not available on 
silicon. And should a vendor have a particular behavior on a “standard” instruction, there is no way to trigger an 
“exit”. 

In this context, implementing the reverse hypervisor concepts requires forcing exits when needed: that is VMM 
guided interception. To that end, two interception strategies were identified:  

• Metadata based execution. 
• Runtime patching. 

1) Metadata based interception 

With the metadata strategy, the code is first analyzed once at slow speed to produce a metadata, then the code 
can be executed at full speed with the metadata. Programs run unmodified which allows natural support of 
intellectual property protection through self-modifying code or memory coherency protection. The metadata 
consists of information used to set hardware breakpoints at desired locations to complement the processor exit 
capabilities.  

There are a few downsides about this approach: 

• Even with complex logic associated with the metadata to create smart “chains” of breakpoints (less than 300 
points in a code base comprising Trusted Firmware A, U-Boot and the Linux kernel), the limited number of 
effective breakpoints in available hardware (typically 6 hardware breakpoints) make the implementation not 
scalable or fragile to different code paths (suspend/resume…) 

• There is no “exit” to VMM on EL3 instructions: a synchronous exception inside the VM and thus the VMM 
needs to hijack the exception handling framework. This is a complex endeavor as the exception handling may 
be in many different states (not configured, partially configured, with/without MMU) at different Exception 
Levels. 

• Though runtime code analysis proved to be able to execute up to 2.5 million instructions per second, the overall 
observable speed of the running program is only a fraction of the expected time. Speed up strategies can be 
implemented by smartly excluding analysis of some parts of the code and this allows a full system to boot in a 
few minutes. 

2) Runtime patching based interception 

With this strategy, the code is described by its “handover” mechanisms: Trusted Firmware to U-Boot to Shim 
to grub to Linux. At each handover, code analysis is performed, and patching occurs (mechanism similar to 
debugger instrumentation). Additional steps of code analysis can be introduced through LUA [16] logic. For 
instance, after applying Linux alternatives, loading a module… The current code analysis is based on having the 
symbols of each phase but that may be changed. 

3) Comparison with Qemu/TCG  

As has been mentioned above, topologically this approach is similar to splitting the exception levels between 
e.g. a QEMU TCG and an ‘accelerator’ such as KVM or HVF. However, rather than using QEMU TCG to execute 
the EL2/3 code, we are using the accelerator itself. Emula4 then emulates specific individual instructions, rather 
than using the TCG to emulate all instructions at EL2/3. This has the advantage of requiring less support from 
QEMU TCG, no need to move state from the accelerator into TCG and back. It means that the ‘switch time’ is 
reduced, and it will improve the performance of executing ‘normal’ EL2/3 code itself.  
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That said, while simple code patching occurs, a smart code injection may be implemented. The VM exception 
handling hijacking showed that it is possible to divert normal code to VMM produced code while confirming to 
MMU and other processor states. So rather than provoking exits to VMM, the static analysis could generate those 
in-VM diversions to provide very high-speed execution. 

D. Current state of proof of concept and roadmap 
1) Interception strategy and no-exit strategy 

The two interception strategies (metadata and patching as described in the previous sections) were implemented 
and compared: 

● the last metadata strategy iteration consumed all breakpoints for the emulation, and none were available 
for debugging. 

● Associated metadata logic complexity kept increasing at each new corner case. 
● running the same image on two hardware platforms requires some level of abstraction in the metadata 

format itself. 

● The code patching resulted in a smaller code base with a lot of refactoring that removed corner cases 
handling needed by the hardware breakpoint strategy. The static code analysis is not noticeable from a 
tester’s perspective which is quite a difference from the runtime analysis of the hardware breakpoint 
strategy. This static code analysis does not depend on the host hardware platform eliminating metadata 
need. 

● The teachings from code injection required for hijacking the VM exception in the metadata approach 
proved it would be possible to implement no-exit custom behaviors (switch read physical timer with read 
virtual timer instruction, read CurrentEL recoded as load constant for the simplest cases) with proper 
MMU and other processor state aspects. 

So, the patching interception strategy was selected as the strategy of choice despite the complexities of handling 
self- modifying code (Linux alternatives) and the need of symbols for code coverage assurance (should the symbols 
be a problem between suppliers, a form of meta-data file with “points” of interests in the code can be envisaged). 

2) Processor emulation details 

Emula4 can run EL3, S-EL1 and EL1 code.  

EL3 has 41 registers accessed thru MRS/MSR instructions but implementation of only a subset is required to 
run Trusted Firmware A: CPTR_EL3, ELR_EL3, ESR_EL3, MAIR_EL3, MDCR_EL3, SCR_EL3, SCTLR_EL3, 
SPSR_EL3, TCR_EL3, TTBR0_EL3, VBAR_EL3. As stated earlier, CurrentEL access needs to be trapped 
“artificially” to obtain proper behavior while running EL3 code. Note that even though the number of registers is 
limited, the functionalities controlled by the register fields is quite important. In addition to registers simulation, 
some instructions such as TLBI have some EL3 reserved flavors that also need to be implemented. 

For EL1 and S-EL1, additional registers need to be controlled: PAN, SP_EL1, CNTFRQ_EL0, ELR_EL1, 
SCTLR_EL1, SPSR_EL1, TCR_EL1, TTBR0_EL1, TTBR1_EL1. Other registers may be dealt with 
opportunistically such as MAIR_EL1 that deals with memory attributes, but they could be intercepted should it 
become necessary. Debug, trace, and performance counters are reserved for Emula4 at this stage. 

Some stats about numbers of times Emula4 handles those instructions: 

● 259 for Trusted Firmware A 
● 7,357 for U-Boot  
● Around 380,000 for booting Ubuntu 23.04 with a 6.2 kernel 

Out of the 7,357 interceptions in U-Boot, 6,929 are caused by read CurrentEL and 411 by read CNTFRQ_EL0: 
those could be smartly inlined, resulting in only 17 exits. 
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The 380,000 interceptions can be significantly reduced because Emula4 simply should not care about them: 

Percentage Instruction Location 
19% mrs x22, elr_el1                                  el0t_64_sync+016c 
19% mrs x23, spsr_el1                                el0t_64_sync+0170 
19% msr elr_el1, x21                                  ret_to_user+00ac 
19% msr spsr_el1, x22                                 ret_to_user+00b0 
19% mrs x1, esr_el1            el0t_64_sync_handler+0014 
5% Many forms Rest of code 

 

Out of the remaining 5% of interceptions many are dealing with MMU (TTBR[01]_EL1…) updates in 
cpu_do_switch_mm which also should not be of much interest for Emula4 in the general case. Bottom line, it is 
expected that only a few thousands of interceptions are needed for a Linux boot (MMIOs are not counted). 

3) Supported hypervisor 

Currently, Emula4 supports MacOS HVF and is planned to support additional hypervisors such as KVM and 
other commercial hypervisors in the future. KVM support will require support for a “raw mode” that removes the 
in-kernel handling of devices such as the GIC and allows them to be simulated externally (e.g. by providing an exit 
from KVM). A patch which negotiates this functionality at runtime through standard KVM API has been developed 
as part of the Emula4 POC. 

4) Simulated hardware, board assembly and device tree 

Qemu allows its users to augment a machine with some devices such as disks. In this context the machine is 
defined by Qemu programmers and changing even simple aspects of the machine may prove quite complex.  

In contrast, Emula4 aims to allow its users to assemble a machine and its devices with its devices based on 
“libraries” of components maintained by vendors or communities.  

To validate this principle, the ‘SolidRun Macchiatobin board’ [17] has been simulated from components like 
memory controller, clock hierarchy, devices such as GIC v2M and v3, PL011 UART, NS16550 UART to the point 
it is possible to boot the SolidRun provided binary image on the simulated board. The software stack in the image 
comprises of the Trusted Firmware, U-Boot, and Ubuntu 23.04 with the Macchiatobin BSP.  

Assembling the board is done through configuration (excerpt): 

-vobj "RAM#address=0x4000000||hostmem#size=4" 
-vobj "SECRAM#address=0x4400000||hostmem#size=12" 
-vobj "RAM#address=0x05000000||hostmem#size=2048" 
-vobj AP806@MARVELL#address=0xf0000000 
-vobj CP110@MARVELL#address=0xf2000000 
-vobj CP110@MARVELL#address=0xf4000000 

 

The device tree for the board is generated from the configuration. For instance, the following configuration snippet 
will generate all phandle references to make the connections between device tree elements: 

-vobj "GIC@QEMU#name=main_gic;root=true" 
-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:1@main_gic…" 
-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:2@main_gic…" 

This device tree generation capability is just a first step towards building a complete System Device Tree. In 
the future, Emula4 should be capable of taking input from System Device Tree or other formats to assemble the 
virtual hardware model. 
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5) Performance elements 

Benchmarking is not that simple, is it hard to compare apples to apples. For instance, the Macchiatobin memory 
controller needs around 5 seconds to train the DRAM connections while it is instantaneous on the simulated 
hardware. The approach to benchmarking has been to create a simulated version of the Qemu “virt” machine on 
Emula4 so that Emula4/virt and Qemu/virt can be compared running the same VMs on the same Apple M1 host. 

U-Boot loading of the Linux kernel image and initrd from a virtio block disk is measured at around 6GB/s which 
is like Qemu with KVM acceleration. The comparison is not entirely fair at this stage as Emula4 virtio 
implementation is just embryonic and uses lower performance legacy mode. 

The Linux kernel provides a CPU microbenchmark during startup when selecting the software RAID 
implementation. Here is the comparison between JITed code from QEMU and Emula4 on an Apple M1: 

 raid6:int64x8 raid6:neonx4 xor:32reg xor:neon 

Qemu + TCG   2,007 MB/s   3,006 MB/s   4,595 MB/sec   2,899 MB/sec 

Emula4 14,438 MB/s 35,871 MB/s 43,763 MB/sec 54,311 MB/sec 

 

This just shows that with Emula4, CPU intensive calculations run at native speed and allows execution of 
complex software stacks at close to real hardware speed, while Qemu, when executing the full software stack (all 
Exception levels) is of course much slower. It is expected that running Arm architecture version 9 with realms on 
Arm architecture version 8 will perform at the same close to real speed with Emula4. 

From a boot time perspective, following are three kernel consecutive message excerpts from Ubuntu with kernel 
6.2 with Emula4, Qemu+TCG, Qemu+HVF: 

#Emula4: 
[    0.330107] Run /init as init process 
Loading, please wait... 
Starting systemd-udevd version 252.5-2ubuntu3 
[    1.222881] virtio_blk virtio0: 1/0/0 default/read/poll queues 

 

#Qemu+TCG: 

[    1.703274] Run /init as init process 
Loading, please wait... 
Starting systemd-udevd version 252.5-2ubuntu3 
[    8.031730] virtio_blk virtio0: 1/0/0 default/read/poll queues 

 

#Qemu+HVF: 

[    0.232395] Run /init as init process 
Loading, please wait... 
Starting systemd-udevd version 252.5-2ubuntu3 
[    0.318886] virtio_blk virtio0: 1/0/0 default/read/poll queues 

 

Emul4 is thus way more performant than TCG and close to Qemu+HVF. The delta (0.10s) to /init between 
Qemu+HVF and Emula4 is the static analysis plus patching. The delta (0.90s) to virtio_blk queues is due to some 
device + GIC emulation issues (not solved as of August 20). 
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6) Debugging 

Emula4 provides an embryonic debug framework to debug both itself and the payloads it runs. For instance, it 
is possible to launch a LUA script when a entering a Linux function: 

bp2 = breakpoints.acquire(vmm, "$linux:folio_wait_bit_common", on_folio_wait_bit_common) 

Those debugging facilities are entirely independent from Linux debugging capabilities such as kprobes. It is 
possible to use Emula4 debug framework on any part of the payload (EL3, transitions from EL1 to EL3…). 

Single stepping allows Emula4 user to follow an SMC call from Linux to OP-TEE. 

7) Source code 

Emula4 code source is not available to the public for now. The following table presents a cloc analysis of the 
code: 

------------------------------------------------------------------------------- 
Language                     files          blank        comment           code 
------------------------------------------------------------------------------- 
C                               55           3297           2006          18475 
C/C++ Header                    34           1602           1079           7366 
Assembly                         3             49             28            189 
XML                              1              0              0             10 
Markdown                         1              1              0              1 
------------------------------------------------------------------------------- 
SUM:                            94           4949           3113          26041 
------------------------------------------------------------------------------- 
Out of the 18K lines of code, 7.4K are the “real meat” (1K are generated by a script that handles sysreg XML 

specification), 6.8K are devices and components, the rest is symbol management, debugging, scripting, and 
faceplates for OS and hypervisor support.  

 

iv.FUTURE WORK 

Many features and functionalities remain to be added. The most salient milestones will be addition of: 

● a Cortex-M core with address space aliasing with the main Cortex-A environment to allow execution of 
SCP firmware on the SolidRun Macchiatobin board. 

● Emulation of MPAM memory protection (not bandwidth measurement and enforcement) on processors 
that are not capable of MPAM.  
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