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Abstract—Virtual platforms (VP) promise the ability to develop and test software prior to hardware being available. 
In model-first VP development, the architectural exploration phase of a project is done using transaction-level models 
(TLM) such that these TLMs represent an executable specification and are used to drive both the hardware and 
software design. While the promised schedule acceleration is often irresistible to managers, the practical execution of 
model-first development exposes some real technical challenges that must be solved for it to be successful. Specifically, 
how does one ensure that the model, the natural language specification, the software, and the hardware design are all 
in sync? In this paper we describe our experience performing model-first development of an SoC using the Intel® 
Simics® simulator. We present how Simics models can be embedded into universal verification methodology (UVM) 
testbenches both as verification IP and as hardware block replacements and how to use this technique to successfully 
ensure that the Simics model and the hardware are consistent, achieving what we are calling RTL-model consistency.  
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I.  INTRODUCTION 

Using virtual platforms (VP) as part of SoC design and verification flows is standard practice amongst large 
engineering organizations such as Intel [1][2]. VP tools such as the Intel® Simics® simulator or QEMU [3] allow 
design teams to create fast transaction-level models (TLM) of their systems, including both processors and 
peripherals, and to use the models to run the exact same software binaries that would run on the hardware. VPs 
enable software development to occur prior to hardware availability [4] and augment the available execution 
capacity for specialized hardware in the post-silicon timeframe [5]. A VP for a new hardware design is typically 
developed by combining existing models for reused hardware blocks with new models for new or updated blocks. 
The longest pole, and greatest risk, in this development process is the creation of the VP models, development of 
software, and writing the register transfer level code (RTL) for the new and updated blocks in the design.  

For each new hardware block, several different engineering teams need different artifacts of the specification 
to complete their pre-tape-out deliverables. The hardware tape-out requires the fully validated and physically 
implemented RTL for the hardware design. Software development teams need fast TLM-based VPs that reflect the 
hardware design to develop and test their software. RTL validation teams need a specification of expected behavior 
to create testbenches, and the RTL for the design to validate using those testbenches. Critically the software and 
hardware artifacts must be consistent with each other, to avoid having to rework the software (or worse, hardware) 
once actual hardware becomes available and final testing is performed.  

Conceptually, there should be a single “master specification”, as shown in Figure 1A, which all engineering 
teams work from. However, these documents are typically written in a natural language like English and are thus 
open to human interpretation. Different interpretations and misunderstandings are prone to happen and will most 
likely cause issues, pain, and rework when artifacts from multiple teams are integrated. To ensure that the software 
developed on a VP also works on the hardware (or RTL) when it arrives, the software, VP models, and RTL must 
all be consistent with the hardware specification [6], as illustrated in Figure 1B. Only if this consistency is 
guaranteed can we fully realize and benefit from "shift-left" software and system development. 
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Figure 1: Relationship of specification, VP, software, and hardware 

A. Ensuring Consistency 
To ensure consistency between the artifacts, our approach is to use the VP model as a golden reference model 

for the other deliverables, as shown in Figure 2, i.e., working model first (similar to what many other teams [7] 
are doing). In model-first, the fast TLM VP model acts as an executable specification. The VP model is used to 
develop and test the software and validate the RTL. This methodology avoids the problems with different 
interpretations of the spec, as it makes the interpretation of the VP team the correct interpretation. It does, however, 
necessitate that the specification and VP model are in sync as the specification evolves, and that there is an 
organizational understanding/acceptance that the VP model will evolve over time. Indeed, the VP model is not final 
until the hardware design is frozen.  

 
Figure 2 : VP as Golden Reference model 

Two key assumptions are made regarding the "golden" VP models in this work. The first assumption is that the 
models are accurate at the transaction level. A second assumption is that software that runs on these models can 
run on the hardware, or on RTL simulation/emulation of the hardware, without modification. Based on these 
assumptions, software and RTL validation teams can begin using the VP models as soon as they are available. This 
achieves a shift-left in software development and the early creation of RTL verification testbenches.  

The RTL testbench is key to the model-first methodology. RTL testbenches apply stimulus to a piece of RTL, 
known as the design under test (DUT), and use a model to predict the output of the DUT. The prediction and 
observed output are compared to determine if a test passes (i.e., if the hardware under test is correct). The DUT in 
the testbench can be a single hardware block or can be a subsystem of hardware blocks integrated together. 

We use the VP model as the testbench predictor model to enforce consistency between the model and the RTL. 
In addition, the VP models can be used as a replacement for their respective blocks in the hardware design before 
the RTL of the hardware block is available. This replacement is made tractable as our modeling methodology aligns 
the logical hierarchy of the hardware design and the VP model hierarchy.  
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The result of replacing hardware blocks whose RTL is not yet available with the VP model enables the 
realization of a complete testbench very early in a program using only the executable specification and existing 
RTL. Replacing hardware blocks in the DUT with VP models is also beneficial once RTL starts to appear–by 
replacing parts (hardware blocks) in the DUT with VP models, it is possible to run tests faster and to test hardware 
blocks that depend on RTL for hardware blocks that are not yet available.  

B. A Constantly Updated Virtual Platform Model 
Writing golden models for use by hardware and software teams following model-first development means 

writing the VP model as the specification itself is being written and updated. This approach requires an integrated 
effort instead of a serialized one (where an architect writes a specification and then hands it off to a modeling team, 
“after it is done”). It also requires a mindset shift towards a more iterative development methodology around RTL 
verification components used in a testbench. 

Our approach is to integrate modelers into the hardware architecture team. The modelers continuously create 
and update the VP models as the hardware architecture evolves. The models keep pace with internal drafts of the 
specification and do not wait for official releases. Indeed, the models are part of the release of any specification 
drop. This causes some additional work in modeling as the architecture evolves; specifically, the area under the 
effort curve is greater, but the benefit is that the model is always available and in sync with the spec.  

Consumers of the model can begin using it early, but they need to be aware of the model status and that it will 
evolve over time. In point of fact, driving the understanding that the model will be updated several times as the 
specification evolves was an initial challenge for us across the engineering organization since previous projects 
have been based on a frozen specification. This updated understanding has been most pronounced in the RTL 
validation world where the expectation of a rarely changing predictor in the scoreboard was previously the norm. 

II. EMBEDDING INTEL SIMICS SIMULATOR VP MODELS IN UVM TESTBENCHES 

The key technology enabling model-first is the embedding of VP models into RTL testbenches as both predictor 
and a portion of the DUT, as shown graphically in Figure 3. RTL validation at Intel is typically performed using 
SystemVerilog and the universal verification methodology (UVM) [8]. UVM testbenches generally instantiate a 
DUT connected to verification intellectual property (VIP) components that drive and monitor traffic. A key 
component in a UVM testbench is the scoreboard which receives monitored transactions for the inputs and outputs 
of the DUT, runs the input transactions through a reference model based on the specification (the predictor) to 
produce the expected output transactions, and then compares the expected output to the observed output.  
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Figure 3 : Block diagram of Simics as an RTL replacement and as the predictor in a scoreboard 
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Traditionally, the predictor is implemented using a high-level language such as SystemVerilog or SystemC, 
whereas, in this work, we have chosen to use an Intel Simics virtual platform model. We use the Intel Simics virtual 
platform model as the scoreboard predictor, and/or as a replacement of one or more hardware blocks in the DUT 
ahead of RTL being available.  

The Intel Simics simulator manages models as opaque binaries using the standard host operating system C ABI. 
This makes the external interface of the models language-independent, allowing models to be developed in a variety 
of languages including C, C++, SystemC, Python, and the Device Modeling Language (DML) [9]. The language 
of the model does not matter at runtime, and users of a model do not need access to the source code of the model. 
All that is needed is access to the definitions of the interfaces exposed by the model. This is different from existing 
industry solutions for VP-RTL co-simulation which typically rely on VP models being written in a particular 
language and having the source for the models available. Such an approach would be too limiting for our needs.  

Instead, our solution is to embed the Intel Simics simulator and a set of models as a VP configuration into an 
RTL simulator. Embedding is a standard feature of the Intel Simics simulator, used by many teams at Intel and 
outside. The embedded simulator communicates with the RTL simulator over the SystemVerilog direct 
programming interface (DPI), which is a standard feature in commercial RTL simulators. The DPI capability 
enables interfacing between SystemVerilog and C, where SystemVerilog can call C functions and where C 
functions can also call SystemVerilog functions. This enables interacting with the Intel Simics simulator APIs, 
which are available in C. 

III. IMPLEMENTATION DETAILS  

The DPI API created in our approach provides hardware-protocol-agnostic generic SystemVerilog functions 
that exposes memory-mapped transactions, basic signals, and interrupt buses in the embedded virtual platform 
configuration towards the rest of the testbench environment. These DPI functions are sufficiently generic for 
sending and receiving transactions to the VP models such that they can be converted into protocol or VIP-specific 
SystemVerilog classes for use in a UVM scoreboard or for interfacing with bus functional models (BFM). 
Concretely, an Intel Simics model that exposes an Intel Simics simulator memory transaction interface can 
ultimately be exposed as a cycle-accurate hardware interface such as AXI, APB, OCP, etc., or easily digested by a 
UVM transaction object. The use case does not affect the VP model, and this VP model is the same model used for 
software development.  

The DPI functions ultimately facilitate communication initiated from RTL to Simics, and from Simics to RTL, 
for both the hardware block replacement and UVM scoreboard use cases; the flow of transactions is shown in 
Figure 4. On the VP side, the interfaces to DPI are implemented by a VP module called model-iface. There is only 
one model-iface instance in the entire VP configuration and the connectivity from model-iface to the target Intel 
Simics model is compiled in the specific model-iface created for the specific VP. This module combined with the 
DPI API is conceptually an hourglass that exposes many SystemVerilog interfaces, through the few generic  
model-iface interfaces, into the many interfaces of the different VP model instances in the VP.  
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Figure 4 : Flow diagram of  RTL through DPI to the VP model 
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When using a Simics model as a hardware block replacement, a SystemVerilog stub module must be created 
where the port types and names exactly match the ultimate DUT RTL. Additional adaptation logic or BFMs are 
used internally in the stub module to implement a transactor and convert the Verilog ports to data types that can 
call the generic DPI functions. These BFMs can be commercial VIP, or custom created. The BFM handles the 
conversion logic from cycle-based transaction to class-based transaction depending on the interface’s protocol. 
Adapter code in SystemVerilog is then used to call the DPI API for communication to the VP model. The return 
values of the DPI function are then used to create the response back to the RTL.  

When using a VP model as a predictor in the UVM scoreboard, cycle-based conversion logic inside the 
scoreboard is not necessary, since all monitored transactions captured in the scoreboard are already at transactional 
level. The predictor can directly use information extracted from the monitored transaction to construct the required 
DPI function call, which will then be sent to the VP model. The response from the VP model, which will be the 
predicted response, can then be pushed into a queue in the scoreboard to be used for comparison when needed. 

A. DPI Implementation Details 
The DPI functions in our implementation generally fall into three categories: 1) Setup and initialization, 2) time 

synchronization, and 3) transaction handling. Setup and initialization encompass the creation of an Intel Simics 
simulator instance and the loading of the simulator configuration into the simulator; a sample code snippet is shown 
in Figure 5. For any given RTL simulation, there is only ever one instance of the embedded Intel Simics simulator. 
As a result, the target script executed by the embedded Intel Simics simulator must contain instances for all the 
different models needed across the entire testbench, and the model-iface.  

Time advancement in the Intel Simics simulator time domain is required for VP models that post events in the 
future. For example, if a simple device that performs a hash over a set of data takes time before signaling a "done" 
interrupt, then the model would post an event callback that asserts the interrupt signal after a defined amount of 
time. If Simics time never advances, then the interrupt would not be observed by the RTL simulator. To drive time 
in the Simics domain, we instantiate a simple clock device in the VP. This clock device is configured with a 
frequency matching the DUT in the RTL testbench. A DPI function wraps the Intel Simics simulator API call 
SIM_continue(), exposing it to SystemVerilog. This DPI function is then called for every positive clock edge in the 
RTL simulator time and thereby advancing time in the Simics domain. This ensures a tight coupling of RTL and 
Simics time. 
// Initializes the Intel Simics simulator and runs given target script 
void start_simics(const char* target_script) { 
     … 
     SIM_init_environment(argv,1,1); 
     … 
     // Initialize the simulator 
     SIM_init_simulator2(init_args); 
     … 
     // Run the Intel Simics simulator target script – sets up the Simics configuration for the test 
     SIM_run_command_file(target_script, true); 
} 
 
// Advance Simics time 
void advance_simics_sim(uint32_t num_cycles) 
     … 
     SIM_continue(num_cycles); 
     … 
} 

Figure 5 : Code snippets in C from the Intel Simics simulator DPI setup and initialization functions 

B. Model-iface Implementation Details 
Transactions initiated by RTL to the VP model call the associated generic DPI function for the interface type, 

with parameters to identify the specific interface and the details of the transaction. The model-iface VP module 
exposes to the DPI functions separate interfaces for each interface type, i.e. memory-mapped, interrupt, signal, etc. 
via the Intel Simics Simulator C API. These DPI functions take as a parameter a unique interface identifier (ID) 
where the model-iface uses the interface ID to route the transaction to the specific interface of a specific model 
instance in the VP configuration and then to send the response back to the caller.  
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The relevant source code for the DPI function of a memory-mapped transaction is shown in Figure 6. The obj 
and intf parameters are required to direct the transaction to the correct model and interface of that model via the 
model-iface.  
// Function for memory read or write transaction from RTL calling into Simics model 
int iface_in_mem_trans(conf_object_t *obj, const transaction_interface_t* intf, uint32_t addr, uint8_t* data, uint32_t len, int 
is_write){ 
 
    uint8_t* buf = (uint8_t*)malloc(len * sizeof(uint8_t)); 
 
    atom_t atoms[] = { 
        //… setup transaction params in atoms  
    }; 
    transaction_t t = { atoms }; 
     
    if (is_write) { 
        //… send data if it is a write 
        SIM_set_transaction_bytes(&t, wrdata); 
    } 
 
    // Generate transaction 
    int ret = intf->issue(obj, &t, addr); 
    if (!is_write) { 
        //… populate data if it is a read 
        SIM_get_transaction_bytes(&t, rddata); 
    } 
    free(buf); 
    return ret == Sim_PE_No_Exception; 
} 

Figure 6 : Code snippets from mem transaction C DPI functions 

The more complex transaction case is where the VP model needs to initiate a transaction towards the RTL. For 
this situation, the RTL defines and exports SystemVerilog functions via DPI to the embedded Intel Simics simulator 
which are called by model-iface. In our implementation, we create these functions inside a SystemVerilog module 
called simics_manager, which is instantiated at the top level of the testbench. The model-iface module provides the 
hook to enable the VP model to call into simics_manager functions. The model-iface has special initialization code 
to resolve the names of the exported DPI functions found in simics_manager using dlsym and calls these functions 
when it receives transactions from the model; a sample code snippet is shown in Figure 7. In this example, the sig 
port of the model-iface calls the iface_out_sig_trans function, which is a function pointer initialized when the 
virtual platform is started and is assigned to be the symbol for the DPI function called iface_out_sig_trans defined 
in SystemVerilog. 
// Function pointer that the model-iface calls when model sends transaction 
extern int (*iface_out_sig_trans)(int interface_id, uint64_t addr, uint8* data, uint32 len, int is_write ); 
 
// model-iface port used to send Simics model transaction to RTL 
port sig[i<NUM_PORTS] { 
    implement signal { 
        method signal_raise() { 
            log info,4: "signal_raise()"; 
 
            // send transaction 
            iface_out_sig_trans(I, 1); 
        } 
        method signal_lower() { 
            log info,4: "signal_lower()"; 
 
            // send transaction 
            iface_out_sig_trans(I, 0); 
        } 
    } 
} 
 
// Run during Simics initialization to resolve function pointer location within the RTL 
static void connect_iface_out() { 
    /* open the needed object */ 
    void* handle = dlopen(NULL, RTLD_LOCAL | RTLD_LAZY); 
 
    /* Resolve function location*/ 
    if((iface_out_sig_trans = dlsym(handle, "iface_out_sig_trans") )) { 
        printf("SUCCESS: resolved symbol iface_out_sig_trans\n"); 
    } else { 
        printf("INFO: symbol iface_out_sig_trans not found – assuming running Simics standalone (outside RTL sim)\n"); 
        iface_out_sig_trans = iface_out_sig_trans_local; 
    } 
} 

Figure 7 : DML Code snippet from model-iface 

Whenever a SystemVerilog function is called from model-iface, the SystemVerilog function stores the 
transactions received into a SystemVerilog queue. A sample code snippet of the SystemVerilog function for a 
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simple signal interface is shown in Figure 8. The queue is accessible from anywhere in the testbench by placing it 
in the UVM configuration database. This allows the scoreboard to pop the transactions from the queue for 
comparison purposes, or to allow the stubbed RTL module to pop transactions and send out cycle-accurate 
transactions when using the VP model as a hardware block replacement. 
export "DPI-C" function iface_out_sig_trans; 
 
//------------------------------------ 
//Interrupt Handler 
//------------------------------------ 
function iface_out_sig_trans(input int interface_id, input int is_raise); 
     
    string call_info; 
    call_info = $sformatf("[iface_out_sig_trans] interface id = %d; is_raise = %d\n", interface_id, is_raise); 
    //`uvm_info("iface_out_sig_trans", call_info, UVM_LOW) 
    $display(call_info); 
     
    //Push interrupt transaction into the queue denoted by interface_id index 
    simics_q.interrupt_if_queue[interface_id].push_back(is_raise);   
      
endfunction 

Figure 8 : Code snippet from the simics_manager of a SystemVerilog function for handling transactions coming from the model-iface 

IV. RECORD-REPLAY DEBUGGING 

Our implementation also provides an easy way to reproduce and debug issues reported during RTL simulation 
using a record-replay methodology, as illustrated in Figure 9. Since the model-iface module acts as a proxy, it 
receives all transactions to and from the VP model and can thus perform the following functions; 1) records 
transactions to a file, 2) plays back transactions in an Intel Simics simulator-only environment for VP model debug, 
3) directs transactions to the specific interface of the specific target VP model, and 4) redirects transaction responses 
from the VP model to the RTL simulator via the interface-specific SystemVerilog DPI function.  
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Figure 9 : Block diagram of model test and model debug environment 

Recording works by serializing all the transactions that pass through the proxy and sending it to a recorder 
object, a standard feature of the Intel Simics simulator. The recorder saves the transaction timestamp and contents 
to a text file. Playback is achieved by loading the same simulator configuration used in the embedded Intel Simics 
simulator into an Intel Simics simulator-only environment and setting the recorder in playback-mode. In this mode, 
the recorder issues each transaction as specified by the recording file at the point in simulated time indicated by the 
timestamp. The model developer can then use traditional techniques for debugging the VP model, including using 
simulator logging and connecting a software debugger to the Intel Simics simulator.  
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V. RESULTS 

The methodology described in this paper has enabled us to achieve the following key results: 

• Use of the VP as the golden reference for software and RTL development and testing. The 
implementation presented in this paper embeds the Intel Simics simulator framework along with a VP 
model into an RTL-level simulator. It uses a VP model as the UVM predictor when testing RTL, 
providing the ability to maintain consistency between the RTL and the VP model. This consistency 
mitigates the risks for bugs and spec misalignment when software teams transition from using the VP 
model to RTL and eventually hardware.  

• Earlier testbench development and RTL validation speedup. Embedding the VP model into the 
testbench DUT as a temporary replacement for the RTL while it is unavailable allows the RTL 
validation teams to start building testcases and testbenches earlier. 

• VP model and software debug in a standalone environment. The model-iface can use the Intel 
Simics simulator recorder functionality to save a recording of all inputs to the VP models. When RTL 
developers and testers run into testbench failures, they can provide the VP model developers the 
recording, who can then replicate and analyze the issue in a standalone VP simulation without the need 
for the RTL testbench infrastructure.  

We have found the methodology to have the following limitations: 

• RTL developers and testers have limited VP model visibility. Currently, engineers analyzing the 
results of an RTL simulation do not have a means of inspecting internal states and signals of the Simics 
model. The debugging and viewing of signals in the RTL simulator are only on the boundary of the 
VP model and require the support of VP model developers for internal debugging.  

• Abstraction-level limitations. The VP models might be unable to mimic certain hardware behavior 
such as error response signals that are specific to different hardware protocols like OCP and AXI.   

VI. CONCLUSIONS 

In this paper, we've presented a technique for model-first development using fast VP models created using the 
Intel Simics simulator as the executable specification for an SoC. To guarantee that the specification, hardware 
design, and software are all in sync, these models are consumed by an embedded Simics simulator inside a standard 
UVM scoreboard, thereby closing the loop between the models and the RTL. These models can also be used as a 
replacement of a hardware block prior to the RTL being available to shift-left RTL testbench development. This 
has allowed us to use the models for early software development with the confidence of model-RTL consistency.  
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