

1

Grid-based Mapping and Analysis of a

GoogLeNet CNN using MapGL Editor

Claudio Raccomandato, Politecnico di Torino, Turin, Italy (claudio.raccomandato@studenti.polito.it)

Emad M. Arasteh and Rainer Dömer, CECS, University of California Irvine, Irvine, USA

({emalekza,doemer}@uci.edu)

Abstract—The Grid of Processing Cells (GPC) has been proposed as a scalable many-core architecture, modeled

using SystemC TLM-2.0 methodology. This work introduces a graphical CAD software called Map Grid-based Layouts

(MapGL) to facilitate the design process of GPC-based applications, automatically generate their SystemC models, and

perform analyses on memory usage and speed. Using MapGL, we map a GoogLeNet Convolutional Neural Network

(CNN) to a suitable GPC and improve it with a new modular Memory Access Resources and Interfaces (MARI) library

for better communication between processing cells and lower resource usage.

Keywords—System modeling; SystemC-TLM2.0; CAD IDE

I. INTRODUCTION

Over the last two decades, computer systems focus shifted from raising the clock frequency toward increasing

the number of processors [1]. This trend led to higher design complexity and shared memory contention caused by

the “memory wall” problem [2]. The growing complexity drives the need for modeling systems at higher abstraction

levels using SystemC to evaluate and optimize them early in the design process. Here, we introduce a graphical

CAD tool called Map Grid-based Layouts (MapGL) to facilitate the design of embedded many-processor systems,

automatically generate SystemC models, and optimize resource usage and speed.

A. Grid of Processing Cells (GPC) Platform

Traditional single-, multi-, and many-core computer architectures suffer from the well-known memory

bottleneck to a single shared main memory which can delay many-core processors for thousands of cycles due to

bus contention despite sophisticated multi-level cache hierarchies [3]. As an alternative scalable computer

organization, tiled network-on-chip architectures have been proposed with separate local memories, such as the

Grid of Processing Cells (GPC) [4] where processor-memory pairs are arranged on-chip in a two-dimensional array

with only local interconnect.

The checkerboard variant of a GPC is shown in Figure 1. Processor cores Cyx and local memories Myx are

arranged in an alternating pattern so that every processor can access its four neighboring memories. Instead of a

shared bus, the combination of a multiplex and de-multiplex interconnect arbitrates the memory accesses in each

cell. Specified as a high-level model in SystemC TLM-2.0 with socket-based interconnect, the checkerboard GPC

can serve as a starting point for design space exploration of scalable computing platforms without a shared memory

bottleneck.

Figure 1. Checkerboard Grid of Processing Cells (GPS) [4].

2

One of the main challenges for grid-based architectures is programmability. Applications cannot be developed

by traditional methods with the assumption of one shared memory. Instead, software must be explicitly partitioned

among the cells. Instructions must be mapped to processing cores, and data must be allocated in local memories.

Manual partitioning is possible, but tedious and error prone.

B. Problem Definition

This work aims to achieve three goals:

1) Demonstrate the scalability and usability of GPC with two applications of different size-complexity.

2) Improve the mapping process of GPC applications through an interactive GUI.

3) Simplify performance evaluation and inter-cell communication of GPC-based models.

II. RELATED WORK

A large body of research addresses the partition and mapping problem to many-core network-on-chip (NoC)

platforms [5], [6]. Yang et al. [5] proposed a multi-application mapping method on the many-core NoC that finds

a region on the NoC for each application and then performs a task mapping that maps all tasks of the application

into each region. Murali et al. [6] proposed a methodology to map different use-cases onto the NoC architecture,

satisfying the performance constraints of each use-case. While these works focus on many-core architecture

mapping, our work is a holistic application mapping approach on the grid of processing cells.

Bruch et al. proposed a graphical user interface computer-aided design (CAD) tool which allows the user to

evaluate the performance of NoCs systems using traffic generators in SystemC simulations [7]. While the proposed

BrownPepper simulator [7] allows to design and profile RTL and transaction-level models on a 2D-mesh SoC

architecture, it does not allow the user to interact, visualize and map an application.

Platform Architect is a commercial software from Synopsys based on SystemC TLM that enables designers to

analyze SoC architectures using a graphical user interface [8]. Still, designers are limited to existing features of the

proprietary environment, and creating compatible IP models is challenging. MapGL offers free and open-source

solutions with more fine-grained controllability over the entire design process and customization for exploring grid-

based architectures.

III. MAP GRID-BASED LAYOUTS: MAPGL

We present MapGL, an highly configurable CAD software which lets the user design a custom GPC,

automatically generate the SystemC model, and analyze it [9]. The user can focus on the application design without

distraction due to GPC and programming technicalities. A MapGL design model is highly configurable and

portable, saved as a single JSON file. Currently, MapGL works only with the GPC but it can easily support other

grid-based many-processors architecture. The cores consist of Modules, basic processing elements running C++

code, which can be replaced with SystemC-based processors or accelerators.

Figure 2 shows the MapGL design flow from the application mapping to the generation of the SystemC model,

while Figure 3 shows MapGL’s main window with a Canny Edge Detector [10] example opened.

A. Application Mapping

On the main window, MapGL shows the user-configurable GPC structure in the Memories View, where the red

squares represent the cores, and the blue ones the memories. An alternative Channels View can be selected, allowing

the user to focus on cores communication. Inside the MapGL editor, every design is defined using Modules and

Channels. A module describes the behavior of a core using C/C++ code, while a channel allows two or more cores

to communicate. The application modules are listed hierarchically on the left side of the window and can be mapped

interactively by drag-and-drop to the cores. External I/O interfaces of the GPC are displayed for configuration on

the edges of the GPC grid in the channel view. All components and the GPC itself are configured using adjustable

parameters on the right side of the window.

3

(a) Memories View

(b) Channels View

 Figure 2. MapGL design flow and generated files’ structure. Figure 3. MapGL mapping of a Canny application.

B. SystemC TLM-2.0 Project Generator

Once the application mapping has been completed, MapGL validates the platform and automatically generates

the SystemC code for the designed GPC application. Users can configure the specific simulation environment for

software dependencies via a preferences dialog. The structure of the generated SystemC project is shown at the

bottom of Figure 2. An initial testbench and a Makefile are also generated to compile and run the simulation

immediately.

C. Example of a Canny Edge Detector on a 4-by-2 GPC grid

As an example of MapGL usage, we map a Canny Edge Detector [10] application to a 4-by-2 Checkerboard

GPC, as shown in Figure 3. Listing 1 shows an extract of the canny modules package where its modules (e.g.

blur_x) are described in terms of parameters (e.g. rows) and parameters’ attributes (e.g. val). Each module’s actual

behavior must be defined in a C++ function template as shown in Listing 2 for the blur_x. The references to the

FIFO_out and FIFO_in interfaces (Section IV) are required to communicate with the surrounding cores using the

pop() and push() methods.

 Listing 1. Extract of Canny modules package (JSON). Listing 2. Extract of the blur_x module implementation.

4

IV. MARI: MEMORY ACCESS RESOURCES AND INTERFACES LIBRARY

The GPC structure forces each core to communicate by reading and writing data into shared memories.

However, a standard communication protocol makes data exchange and memory contention manageable. Our

MARI library simplifies interactions and optimizes memory usage by providing a set of software-based FIFO

channels that the user can use to transfer data directly between cores.

A. Interfaces

The library is divided into Memory Interfaces and Channel Interfaces. The memory interface connects a core

to one memory through TLM-2.0 sockets and provides basic read() and write() methods to access the memory

array. The channel interface represents a second layer of abstraction, e.g. a FIFO interface, which provides interface-

specific methods, like push() and pop(), to the connected memory. The MARI library distinguishes between input

(FIFO_in) and output interfaces (FIFO_out). Figure 4 shows a simple example of three cores and a shared memory.

A FIFO interface manages its data queue as a ring buffer using two memory-stored counters for sent (S) and

received (R) bytes. MARI automatically handles the needed inter-core synchronization through interrupts when the

queue is empty and full (blocking communication).

B. Logging for Profiling

During a simulation, MARI can generate a record of all the memory accesses and store it in a file called mari.log,

which can be used to analyze the traffic and profile the platform. The log file is encoded in binary format to reduce

its size, as shown in Figure 5. Each entry logs the operation performed, the channel and memories used, and the

simulation time it started and ended.

V. MAPGL PROFILING

Assisted by MARI, MapGL allows designers to analyze the memory usage and timing of the application.

Memories usage analysis is static, whereas timing analysis is dynamic and requires running a simulation.

A. Memories Usage Analysis

Memory usage is analyzed for each GPC cell based on the space required by the core program and

communication channels. The analysis results are available as a numeric report and also graphically as a heat map

of the grid cells, as shown in Section VI.

B. Timing Analysis

Before simulating to estimate the application’s performance, the user can configure memory read and write

delays, interconnect propagation delays, and cores computation delays. By exploiting MARI profiling capabilities

(mari.log), MapGL tracks the timing of the application in detail during a simulation and generates a report about

the application speed. For each core, the report distinguishes between five delay contributions:

• The latency is the interval from the start of the simulation to the first pop operation.

• The execution delay is the span between the first pop and the last push.

• The idle delay represents the sum of all the moments in which the core’s channels wait to push or pop data.

• The channels delay is the sum of the intervals in which the core’s channels read or write data to the

memories.

• The real execution delay represents the actual computation delay of the core, and it is equivalent to the

execution delay without idle and channels delay.

Figure 6 shows how the five delay contributions interchange. The analysis results are also available as a heat

map of the grid cells, as shown in Section VI.

5

 Figure 5. mari.log memory access encoding.

 Figure 4. Example of MARI channels between three cores. Figure 6. Core different delays contributions.

VI. EXPERIMENTS AND RESULTS

This section will analyze the design process and the experimental results of three SystemC TLM-2.0 models of

the GoogLeNet CNN mapped and profiled using MapGL. The first model, called preliminary, represents the first

attempt to map the application. The other two models use an improved mapping; one tends to increase the

application’s speed, called high-speed, and the other optimizes the memory usage, called low-memory.

A. Case study: GoogLeNet CNN

The GoogLeNet is a state-of-the-art CNN for image classification, winner of the ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC) 2014 with only 6.67% top-5 error [12]. The network comprises 22 layers when

counting only layers with parameters or 142 if not. Figure 7 shows the entire structure of the GoogLeNet CNN. A

SystemC model of the GoogLeNet CNN that uses the Caffe model [13], and OpenCV [14] has been designed [15],

[16]. This work will use that model as a reference for the new ones mapped on the GPC architecture.

For the GoogLeNet timing, we analyze the computational complexity of layers in terms of the number of

multiplications (Nmul) and the number of additions (Nadd). The size of the input volume to each layer is Wi × Hi × Ci

where Wi, Hi and Ci represent the width, height, and a number of channels, respectively. The most computationally

expensive layer in GoogLeNet, the convolution layer, has the following hyperparameters: K number of filters,

kernel size of F, stride S, and padding P. The total number of weights in a convolution layer is F·F·Ci·K, and the

total number of biases is K. To compute all output elements for all K filters, total number of required multiplications

is and total number of additions is . The computational

complexity of other constituent layers of GoogLeNet, such as pooling, rectifier, etc., is analyzed similarly in terms

of the total number of multiplications and additions [15].

Given a 32-bit single-precision floating-point multiply-accumulate (FP32-MAC) unit available, we assume the

total computational latency of a layer to be the product of the number of MAC operations and the inverse of the

peak floating-point operations per second (FLOPS): 𝑁𝑀𝐴𝐶 ∙
𝑠

𝑓𝑙𝑜𝑝
 . The peak FLOPS value is the maximum number

of single-precision floating-point MAC operations each core can perform per second. Hence, computational latency

in time units can be evaluated by knowing the core maximum number of FLOPS.

B. GoogLeNet CNN on GPC

The mapping strategy was to exploit the scalability of the GPC architecture by manually assigning one CNN

layer per core while maintaining a modular structure and using as few additional cores as possible. As shown in

Figure 7, the first and last layers of the network are connected in series, while the nine inception blocks in the

middle repeat themself without any significant difference. Every inception block has 4 parallel paths: 1 formed by

2 layers, 1 by 3 layers, and 2 by 4 layers. The inception block mapping of the preliminary model, shown in Figure

8 (a), does not use any channel abstraction layer, causing each memory to contain only one channel.

6

Figure 7. GoogLeNet CNN structure, redrawn from [11].

Additional Fork and Merge modules were added to serialize and deserialize data in case of multiple initiators

or targets, increasing the number of required cores to 20. The improved mapping, shown in Figure 8 (b), uses the

MARI library to create in the same memory parallel channels of different sizes, which brings back the number of

cores to 15.

Figure 9 shows the two MapGL mappings for preliminary model and the improved model. The first layers of

CNN are shown in yellow, the last ones are in green, and the inception blocks are in red. Four external memories

are placed in the north, east, west, and south of the model (not shown in the figure). The north external memory

stores the input images, two memories on the sides shorten the path between cores, and the south memory stores

the output data.

The preliminary mapping uses a 15×13 grid for a total of 195 available cores and 26 unused. Meanwhile, the

improved mapping uses a 15×10 grid with 150 available cores and only one unused. Overall, the improved mapping

has 7 cores more than the theoretical 142.

For the preliminary model and improved high-speed model, the size of each FIFO is equal to the size of the

payload (if lower than the GPC max memory size) so that the push or pop takes just one or few iterations, reducing

the number of stalls. For the improved low-memory model, each FIFO is reduced to an arbitrarily small value of 64

bytes.

For MapGL timing analysis, we rely on the memory read and write delays in [17]. The off-chip memories are

assumed to be DRAMs, and the on-chip memories SRAMs. The propagation delay of the multiplexer is arbitrarily

chosen to be one-tenth of the on-chip memory read delay, as shown in Table I. The Ara vector processor [18] was

used as reference for its 16.9 DP-GFLOPS needed to evaluate the computational delay in time units of each core

starting from the complexity (Section V) as (e.g. first convolution delay ≈ 14ms).

 Table I. Timing analysis communication delays.

 Figure 8. GoogLeNet CNN on GPC inception block design.

Delay Type Delay [ns]

Off-chip memory read (DRAM) 50

Off-chip memory write (DRAM) 50

On-chip memory read (SRAM) 2.5

On-chip memory write (SRAM) 2.5

Multiplexer propagation 0.25

7

Figure 9. GoogLeNet CNN on GPC structure.

 (a) Preliminary (b) High-speed (c) Low-memory (a) Preliminary (b) High-speed (c) Low-memory

 Figure 10. Memories usage analysis heat maps. Figure 12. Timing analysis heat maps, communication delays.

 (a) Preliminary (b) High-speed (c) Low-memory (a) Preliminary (b) High-speed (c) Low-memory

 Figure 11. timing analysis heat maps, execution delays. Figure 13. timing analysis heat maps, idles delays.

C. Comparison

The memory usage heat maps of the preliminary, improved high-speed, and improved low-memory models are

shown in Figure 10, while the heat maps for execution, communication, and idle delays are shown in Figure 11,

Figure 12, and Figure 13.

Looking at Figure 10, it is clear that the first layers of the GoogLeNet CNN require more memory to store the

first transformations of the input image. However, the smaller FIFOs used in the improved low-memory model

make the memory usage more uniform.

There is a correlation between the memory usage in Figure 10 and the communication delays in Figure 12 even

if the heatmaps’ normalization makes this result less evident. Specifically, increasing the size of the FIFOs reduces

the channel’s delay because it decreases the number of accesses to the shared memory required to read the entire

data.

Table II shows the simulation results of the three models. The improved mapping reduces by almost one-fourth

the grid size compared to the preliminary. This result caused the two following models to become faster and require

fewer memories. Overall, the high-speed model performs better than the preliminary model, while the low-memory

model represents a valuable alternative to reduce memory consumption.

D. Throughput

The application’s throughput was evaluated after feeding 500 images to the three models. The resulting

throughput in each case was around 23 fps. As shown in Figure 12, the communication delays of the first layers are

much higher than the rest of the structure, which leads to a bottleneck that reduces drastically the throughput of the

application. One possible solution could be partitioning these layers into multiple cores to perform the operations

in parallel, reducing the overall execution delay. A clever design with fine-grain pipelining could increase the

calculated throughput.

8

 Table III. Summary of the results of the three models.

VII. CONCLUSION

This paper presented the MapGL editor to map and evaluate the performances of three GPC-based GoogLeNet

CNN models, exploiting the grid scalability of the GPC architecture up to 195 cores. All the models were

interactively mapped, automatically generated in SystemC, and profiled using the MapGL built-in analysis tools.

The MARI library reduced the grid size by one-fourth and improved the timing analysis accuracy, making hidden

bottlenecks easier to identify. The results showed the superiority of the high-speed model over the preliminary

model, indicating the low-memory model as a valuable trade-off to reduce memory usage.

REFERENCES

[1] L. Azriel, A. Mendelson, and U. Weiser, “Peripheral memory: a technique for fighting memory bandwidth bottleneck,” IEEE Computer

Architecture Letters, vol. 14, no. 1, pp. 54–57, 2015.

[2] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the 1st Conference on Computing Frontiers, ser. CF ’04. New York,

NY, USA: Association for Computing Machinery, 2004, p. 162. [Online]. Available: https://doi.org/10.1145/977091.977115

[3] G. Liu, T. Schmidt, A. Dingankar, D. Kirkpatrick, and R. Dömer, “Optimizing Thread-to-Core Mapping on Manycore Platforms with

Distributed Tag Directories,” in Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), Jan. 2015.

[4] R. Dömer, “A Grid of Processing Cells (GPC) with Local Memories,” Center for Embedded and Cyber-physical Systems, University of

California, Irvine, Tech. Rep. CECS-TR-22-01, Apr. 2022.

[5] B. Yang, L. Guang, T. C. Xu, A. W. Yin, T. Säntti, and J. Plosila, “Multi-application multi-step mapping method for many-core

networkon-chips,” in NORCHIP 2010, 2010, pp. 1–6.

[6] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli, “Mapping and configuration methods for multi-use-case networks

on chips,” in Asia and South Pacific Conference on Design Automation, 2006., 2006, pp. 6 pp.-.

[7] J. V. Bruch, M. R. Pizzoni, and C. A. Zeferino, “Brownpepper: A systemc-based simulator for performance evaluation of networks-

onchip,” in 2009 17th IFIP International Conference on Very Large Scale Integration (VLSI-SoC), 2009, pp. 223–226.

[8] “Synopsys Platform Architect.” [Online]. Available: https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html

[9] C. Raccomandato and R. Dömer, “Modeling and Mapping of a GoogLeNet CNN on a Grid of Processing Cells,” Center for Embedded

and Cyber-physical Systems, University of California, Irvine, Tech. Rep. CECS-TR-23-01, Mar. 2023.

[10] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-

8, no. 6, pp. 679–698, 1986.

[11] G. Bortolan, I. Christov, and I. Simova, “Potential of rule-based methods and deep learning architectures for ecg diagnostics,”

Diagnostics, vol. 11, no. 9, 2021. [Online]. Available: https://www.mdpi.com/2075-4418/11/9/1678

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture

for fast feature embedding,” in Proceedings of the 22nd ACM International Conference on Multimedia, ser. MM ’14. New York, NY,

USA: Association for Computing Machinery, 2014, p. 675–678. [Online]. Available: https://doi.org/10.1145/2647868.2654889

[14] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime computer vision with opencv: Mobile computer-vision technology

will soon become as ubiquitous as touch interfaces.” Queue, vol. 10, no. 4, p. 40–56, apr 2012. [Online]. Available:

https://doi.org/10.1145/2181796.2206309

[15] E. M. Arasteh, “Transaction-level modeling of deep neural networks for efficient parallelism and memory accuracy,” Ph.D. dissertation,

UC Irvine, Irvine, CA, USA, 2022.

[16] E. M. Arasteh and R. Dömer, “Fast loosely-timed deep neural network models with accurate memory contention,” ACM Trans. Embed.

Comput. Syst., jul 2023, just Accepted. [Online]. Available: https://doi.org/10.1145/3607548

[17] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware Software Interface ARM Edition, 1st ed. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[18] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1-ghz+ scalable and energy-efficient risc-v vector processor

with mul- tiprecision floating-point support in 22-nm fd-soi,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

28, no. 2, pp. 530–543, 2020.

 Grid size Channels memory usage [kB] Total memory usage [MB] Channels delay [ms] Total delay [ms]

preliminary 15×13 57948 192 92 213

high-speed 15×10 52153 175 82 201

low-memory 15×10 13 123 100 217

