

1

Fault-injection-Enhanced Virtual Prototypes

Enable Early SW Development for Automotive

Applications

Mohammad Badawi, Javier Castillo, Andreas Mauderer, Jan-Hendrik Oetjens, Robert Bosch GmbH,

Reutlingen, GERMANY

Abstract—Using virtual prototypes to enable early software development has become widely accepted approach in

the in automotive industry. However, evaluating the dependability of programmable System-on-Chips must involve

both hardware and software combined and therefore, the virtual prototype must also provide the needed capabilities

for software development to implement and qualify software safety mechanisms. In this paper, we present a fault

injection framework to raise the level of abstraction in fault modeling and to ease performing and tracing user-defined

fault combinations. Using real industrial virtual prototypes, we demonstrated the utilization of the presented fault

injection framework and we found that the performance overhead fault is below 1% for real-world applications.

Keywords— Virtual Prototyping; Fault Injection; System dependability; ISO 26262; SystemC; TLM.

I. INTRODUCTION

 The use of programmable System-on-Chips (SoCs) in modern automotive applications has been continuously

increasing. As the automotive applications get more sophisticated, the utilized SoCs get more complex.

Additionally, strict safety standards, e.g., ISO26262, must be met and the SoCs must go through an extensive

evaluation process to ensure their reliability and safety in the presence of failures. This process constitutes

evaluating the hardware (HW) as well as the software (SW) [1], in addition to the SW-based mechanisms that react

to HW faults. Once all these components are available, it is possible to conduct dependability evaluation processes

such as fault simulation.

 Discovering inconsistences between the design and specification earlier in the design process can reduce project

cost and time to market. One method to accomplish this is to prepare SW before HW is available, i.e., early SW

development. Additionally, SW-based safety mechanisms such as error detection mechanisms (EDM), error

recovery mechanisms (ERM), and fault management [2] need to be ready to conduct verification and evaluation of

dependability and safety. The increased complexity of programmable SoCs used in automotive applications, has

made it infeasible to use design representations at gate level (GL) or register transfer level (RTL). Their slow

simulation makes it impossible to develop SW and execute real-life scenarios, and their late availability risks

delaying the evaluation of system-level safety. Furthermore, enhancing SW with EDM and ERM imposes

complexity and performance overhead as mentioned in [3], forcing SW development to start even earlier to cope

with additional iterations and qualification tasks that are required. Therefore, virtual prototypes (VP) at high

abstraction levels, such as transactional level models (TLM), became a widely accepted solution in the industry for

enabling early SW development [1][4].

 In this paper, we focus on the industrial application of VPs to enable early development of SW-based safety

mechanisms that are needed to tolerate and react to HW failures. In our approach, we use a fault injection interface,

and we instrument the VP with fault injecting callback functions to model transient faults (single-event upset (SEU)

and multiple-event upset (MEU)) and permanent faults in registers, communication, and computation. Furthermore,

our approach reports comprehensive details regarding the time and types of faults injected in the test cases. With

the correct post-processing, it would be possible to detect fault patterns and dependencies between faults within the

simulation.

2

II. RELATED WORK

The work in [5] proposed an approach to improve the confidence level of fault injection into VPs, which

assumes that the GL model of the design is available, but without safety features. The authors used an SoC with

processing elements and memory as case study. The TLM sockets in the VP of the SoC were instrumented by

callback functions to inject SEU faults. Simulations were performed for GL and VP together to eliminate failures

that were masked at VP boundary. Consequently, the authors could identify realistic and unrealistic failures. Our

work uses similar callback functions, but we use more types of callbacks in different locations, and we use lookup

tables that provide mapping between module boundaries in HW and VP.

The solutions presented in [6,7] also studied the correspondence between faults in RTL and TLM. Our approach

is different from the solutions [5-7] since we target applying our method in a new project to enable early

development of SW-based safety mechanisms, where RTL and GL reuse is not possible.

Kooli et al. in [1] presented a mutation analysis method for SW testing and for HW reliability to study how

faults are propagated between HW and SW layers. In our work, we use callback functions to manipulate the result

of computation functions to enable the analysis of accumulated faults.

Oetjens et al. in [4] elaborated the advantages of employing virtual prototypes to evaluate the functionality of

the system and highlighted the consistency between VP and HW as the most important challenge in this approach.

Building on this outcome, our approach aims to tighten the feedback loop between SW, RTL, and safety.

III. FAULT INJECTION FRAMEWORK

The fault injection framework presented in this paper models transient faults (SEU and MEU) as well as

permanent faults in registers, communication, and computation. As shown in Figure 1, the fault injection

framework consists of the fault injection interface, the fault injection callback functions, and the reporting and

analysis.

Figure 1: The Fault Injection Framework

A. Fault injection interface

The fault injection interface enables data exchange between SW (or tester) and virtual prototype. It allows SW

to inject fault scenarios into the VP model and provides feedback information to the SW. Faults are injected into

the VP in form of fault packets that are encapsulated within a fault scenario. A fault scenario is a set of faults that

have been randomly grouped together or carefully tailored for complex fault combination. The fault scenario has

a unique ID within the test case to ease traceability and analysis. It includes a reference to the first fault packet in

the scenario (as shown in Figure 2(a), and it specifies the number of fault packets. This way the specified number

of fault packets will be injected consecutively starting from the first packet. The data structures for the scenarios

and the fault packets are parameterized and can be included as a header file at SW and VP sides. This way the

data structures in the header can be specialized and the bit width of the fields can be selected depending on the

requirements of the use case.

3

The fault packet has a fixed header length and a variable payload length. The header has a common structure,

which includes the sequence ID, the packet length (to be used for integrity checks), and the packet type. Using the

packet type, the payload is parsed and translated into injectable faults that are mapped to specific fault injecting

callback functions.

Figure 2 Fault Scenario and Fault Packets with Example Values

B. Fault Injection Callback functions

In our approach, we instrument the VP with fault injecting callback functions that can be triggered before or

after the execution of the function that is subject to fault. We use three types of callbacks depending on the

modeled fault as follows:

1. TLM socket callback: Used to model a communication fault in an interconnect, interface or register port

that is directly accessible by the socket. We extended the callback concept described in [5] to support

multiple faults in addition to single faults. Nevertheless, using this callback allows modeling a fault only

when reading or writing to a register occurs via the TLM socket. In other words, the fault occurs only

when a TLM transaction is triggered. To inject faults to registers without a TLM transaction, a special

register access callback is required.

2. Register access callback: Used to model a register fault at any point in time, without the need of a TLM

transaction. This way, it is possible to the trigger the fault and proceed with the execution to examine the

effect of the presented fault. For example, forcing a timeout before the time window has ended without

explicitly triggering a socket read or write transaction.

(a) No. Fault Packets

(b)

(b.1)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(b.2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(b.3)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

L F

1 1

(b.4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

L F

1 1

(b.5)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(b.6)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(b.7)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Type Description

Corrupt computaion function for a number of times

Corrupt computaion until fault is released

Remove stuck at fault

Socket stuck at fault

Write Socket SEU/MEU fault with masked data

Register stuck at fault

Write register SEU/MEU fault with masked data

Fault ID

0x01

Fault ID

0x01

Reg_W_M

Reg_SAF

Link_W

Func

Func_SAF

Rem_SAF

Link_SAF

0

Byte 0

1

3

Pkt Len Type

seq ID

0x8041

Byte 6

Byte 1

Byte 2 Byte 3 Byte 4

0x12 0x5 0x80 0x00

Mask

Mask

5 Link_SAF

0x03

Link IDPkt Len

Pkt Len

8 Reg_W_M 0x1E01

Data

0x0FF0

6 Reg_SAF 0x1E02

Byte 5

DataByte Position

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

Fault Scenario ID

0 7

Byte 5

Mask

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

Seq ID Pkt Len Fault Type

seq ID Type

Payload

Byte 7

Address

0x4 0x0F

Link ID Byte Position

Byte 5

seq ID Pkt Len Type Address Mask

seq ID

0x13

Type

6 Link_W

Byte 0 Byte 1

2

0x081F

Byte 2 Byte 3 Byte 4

Type Function ID

Byte 3

Byte 0 Byte 1 Byte 2

Byte 0 Byte 1 Byte 2

Function ID

4 4 Func

Pkt Lenseq ID Type

Byte 3

Count

0x50

Reference to First Fault Packet

Ref. to packet in (b.1)

6 3 Rem_SAF 2

5 4 Func_SAF 0x55

Byte 0 Byte 1 Byte 2

seq ID Pkt Len Type Seq ID

seq ID Pkt Len

4

3. Function corruption callback: Used to hook a customized function (like “saboteur” concept in [8]) to a

targeted data processing function in the VP model to corrupt its outcome, e.g., suppress or manipulate

the resulting data. This type of callback enables raising the level of abstraction when representing faulty

computation and makes it easier for SW to model and examine accumulated faults.

C. Integration

To elaborate in more detail, we describe next how each type of fault packet and fault callback functions are

integrated together to make fault injection possible.

1) To inject a transient fault to an interconnect or an interface, the packet type Link_W shown in Figure 2(b.3)

is used. It specifies the link that is subject to the fault with an ID. The IDs of the links are provided to SW use

case in form of a lookup table that maps the implemented socket in the VP to the actual HW that is subject to

fault. The packet states the faulty data byte to inject, as well as which byte of the payload to inject the fault to. If

multiple bytes need to be corrupted, multiple Link_W packets are used and all of them will have the same sequence

ID to ease tracing. The packets can then be distinguished by the value of Last and First flags during execution,

since the first packet has (L=0, F=1), the last packet has (L=1, F=0) and all middle packets have (L=F=0). This

way the fault can be set up. However, the fault will be triggered when the socket fault callback is executed the

first time the socket is accessed after this setup. In case of permanent faults, the packet type Link_SAF shown in

Figure 2(b.4) can be used and it will trigger the fault in the socket whenever it is accessed until the fault is released.

2) To inject a transient fault to a register (SEU or MEU), the fault packet type Reg_W_M shown in Figure

2(b.1) is used. This fault type contains the register address and the faulty data used to replace the content in the

register. The mask can be used to enable modifying only a subset of bits in the register. Similarly, the fault packet

Reg_SAF shown in Figure 2(b.2) can be used to inject a permanent fault forcing the value of the register to be

changed according to the provided mask. In this case the faulty behavior remains until it is released. Both packet

Reg_W_M and Reg_SAF result in activating the register callback function of the targeted register to change its

content.

3) To inject a computation fault, the packet type Func shown in Figure 2 Fault Scenario and Fault Packets

with Example Valuescan be used. As a result, the targeted function (specified by Function ID) will be hooked to

the pre-defined corrupting callback function (specified by fault ID). At this point, the fault is configured, but it

will only be triggered when the targeted function is executed. The faults will be triggered for a limited number of

calls (defined by Count in the packet). In case of permanent faults, the packet type Func_SAF shown in Figure

2(b.6) can be used and the fault will persist until it is released. Since the computation functions in VP represents

processing units in HW perspective, a mapping table between the HW implementation and function

implementation in the VP is provided to SW to abstract the details of functionality.

4) To release a permanent fault, the packet type Rem_SAF shown in Figure 2 Fault Scenario and Fault Packets

with Example Values(b.7) can be used. The sequence ID in the release fault packet identifies the fault to be

removed.

D. Reporting and analysis

Our framework collects multiple types of information about the fault injection at run time and generate detailed

logs. We report which faults were injected, the time at which the fault packet was received, the time at which the

fault was triggered, the address of the register it is affecting, and the data and mask of the fault. This report is

generated in different formats, i.e., CSV and XML files to simplify post-processing for further analysis.

By analyzing the files, we can determine which faults are overlapping and affecting the same register. We can

determine if there is a dependency between any of the faults injected in the test case. The reports provide detailed

information that can be post-processed as required by the use case.

An example of the fault injection reporting is shown in Figure 3 and Figure 4. The example is shown for a plain

text log to ease readability. Figure 3 Example log of a Fault Injection Scenarioshows that when a fault packet is

received by the VP and when a fault is triggered in the internal modules. A permanent fault will be triggered in the

VP at multiple points in time until the fault is released, whereas a transient fault will be triggered only once. As

shown in the figure, REG_SAF is applied to register 0x1004 and any subsequent write/read to this register will be

affected by this fault, i.e., this occurs at time 2ms and 5ms. This kind dependency between faults is important to

5

take into consideration and more advanced analyses are required to detect such patterns automatically. The log also

shows a summary for the number of faults executed and the addresses affected, as shown in Figure 4.

Figure 3 Example log of a Fault Injection Scenario

Figure 4 Overall Fault statistics

IV. CASE STUDIES

In our solution, we developed a VP of an SoC under design for the automotive industry. We conducted

experiments to measure the performance and overhead associated with parsing the fault packets and triggering the

corresponding fault injection callbacks. We demonstrate the flexibility of the framework by considering the

following two industrial VP integration methods for our experiments.

A. Simulation based Functional Mock-up Units (FMU)

This use case is a single simulation process that includes the VP model and a mock-up unit representing the

CPU. Here, the simulation environment is responsible for synchronization and communication between the VP

and the CPU mock-up unit. Communication is handled with the use of global variables that are mapped to the

ports and signals of the VP. These global variables are updated periodically before each time step in the simulation.

Fault injection is possible with the use of extra global variables. The VP reads these global variables and forwards

the faults to the internal modules. Two main tests were executed: the first consisted of determining the overhead

of each fault type and the second consisted of measuring the overhead of a specific fault scenario and its effect on

various VP models.

For the first test, we used the minimal VP model shown in Figure 5. This VP has a single slave module and a

single SPI master; certain faults were injected and parsed at the top level and then forwarded to the slave module.

This minimalistic VP model facilitates the visualization of the overhead induced by the fault injection

mechanisms. We measured the total overhead caused by all the faults injected in a single run and then calculated

the overhead per fault. This process was repeated 10 times for each fault type to obtain robust measurements.

Figure 5 Example VP for fault overhead measurements

 In this test, we injected sets of 50, 500, 1000 and 2000 register faults into the VP and measured the total time

required to inject these sets of faults. In other words, we measured the total overhead caused by injecting 50

consecutive register faults in the VP, then we repeated the test with 500 faults, 1000 faults and finally with 2000

faults. This process was repeated 10 times for each register fault type and the average overhead for each set of

faults was calculated (column Overhead [ms] in Table 1). Then we calculated the overhead per fault by dividing

the total overhead by the number of faults injected in that run (column Overhead per Fault [ms]). The register

faults applied were direct writes to registers, i.e., overwrite current register data with new data (Reg_W) and

masked writes to register (Reg_W_M). The process and measurements were repeated by injecting 10 link faults

(Link_W and Link_SAF) into the model. Table 1 indicates the results obtained.

6

Table 1 Measured Overhead for faults

Fault Type Num Faults Overhead [ms] Overhead Per Fault [ms]

Reg_W 50 0.518 0.010

Reg_W 500 4.103 0.008

Reg_W 1000 8.370 0.008

Reg_W 2000 17.776 0.009

Reg_W_M 50 0.699 0.014

Reg_W_M 500 7.288 0.015

Reg_W_M 1000 14.761 0.015

Reg_W_M 2000 27.705 0.014

Link_W 10 0.003 0.0003

Link_SAF 10 0.006 0.0006

 The second test case consisted of injecting a fault scenario into real-life applications; we used the example VP

and two other VP models of ASICs used in the automotive industry (Project A and Project B). The internal

structure of these VPs is shown in Figure 6; however, the configuration and number of SystemC processes is

different between the two projects.

Figure 6 Simplified block diagram of VPs used for fault injection

 For this test, we created a fault scenario where multiple faults of different types are injected into the models,

and we measured the overhead caused by this. The scenario we examined consisted of the following faults: 3

Sock_W, 3 Sock_Saf, 50 Reg_W and 50 Reg_W_M. The average overhead was measured and compared with the

total execution time of the user-defined applications executed on the three models. The resulting execution times

with and without fault injection are presented in Figure 7.

Figure 7 Execution of different applications with and without fault injection.

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

Example ProjectA ProjectB

Ex
ec

u
ti

o
n

 T
im

e
[m

s]

Execution time w/o Fault Execution time w Fault

7

 As can be seen in Figure 7, almost no difference is observable between the execution time of the applications

with and without fault injection. The average overhead of the fault injections for this scenario is about 0.441 ms.

When comparing this with the execution time of the example application, it represents 4.78% of its total execution

time. However, this is a very simple example that does not contain a realistic application. Therefore, we repeated

this calculation for Project A and Project B and determined that the fault injection represents 0.78% and 0.55% of

the execution time of each project, respectively.

B. Multi-process simulation

 This scenario consists of two processes: the fault injection and external stimulus process (client) and the VP

running a SystemC kernel (server). The communication between the processes is based on inter-process

communication (IPC) using Berkeley sockets [9]. An advantage of this approach is it robustness compared to

using global variables and its portability since support for sockets is common in industrial simulators.

 This approach uses a single IPC interface for providing normal external stimulus/data and faults to the VP,

where an additional header is used to distinguish between fault and data. Nevertheless, the flexibility of this

approach allows us to support separate interfaces for data and faults.

 In the current solution, we transmit the time information together with the fault packet and the server decodes

the message and forwards the faults to the internal modules. The simulation time is used to synchronize both

processes. The payload allows for further functionality to be developed, i.e., new faults can be easily added and

decoded.

 In this simulation environment we used the VP for Project A with a user-defined test case. We then injected the

same fault scenario mentioned in Simulation based Functional Mock-up Units (FMU), however now the faults were

transmitted using IPC instead of global variables. The expected execution time of this simulation is much greater

than before due to the added overhead of the IPC mechanism. Nevertheless, the parsing of the fault packets should

be similar to the first simulation environment. The obtained execution time with and without fault injection is shown

in Figure 8. The overhead of the fault injection represents 0.00003% of the total execution time.

Figure 8 Execution time for Multi-process Simulation for Project A with and without fault injection

V. SUMMARY

 This paper emphasizes the advantages of using abstract virtual prototypes to enable early development of SW-

based safety mechanisms at design phase, where RTL and GL are either not yet available or not possible to use

for simulating real-life use cases due to their limited simulation speed. Our framework benefits from state-of-the

art solutions and provides additional techniques to increase integration flexibility and raise the level of abstraction

in fault modeling to ease the examination of user defined faulty behavior. We proposed using fault injection

scenarios as fault envelopes and introduced sequence identifiers to ease traceability. To demonstrate the flexibility

in integrating our framework, we conducted two case studies for real-life automotive applications. The first use

case is based on single process mock-up functional unit. The second use case is based on multi processes with

IPC, where the same interface is shared between fault packets and traffic data. We measured the average per-fault

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

ProjectA Multi-Process

Ex
ec

u
ti

o
n

 T
im

e
[m

s]

Execution time w/o Fault Execution time w Fault

8

overhead that is associated to using our framework and we found it to be negligible. We composed different fault

scenarios and found the average induced overhead to be less than 1% of the total execution time of the test case.

We also provided comprehensive reporting which can enable further understanding of failure behavior and the

relation between failures.

VI. FUTURE WORK

 Following the work presented in this paper, we plan to enhance fault triggering based on time and user-defined

event patterns. We will finalize the features for tracing fault propagation paths to better understand the masked

faults and construct the dependencies between different faults. To improve tool integration and operability, we

aim at utilizing available industrial standards, like IPXACT, to automatically generate fault injection interface

based on use case requirements and to implement standard-compliant reporting to enable post processing with

different tools.

VII. ACKNOWLEDGMENT

This work has been partially supported by the German Federal Ministry of Education and Research (BMBF) in

the project MANNHEIM-FlexKI under grant 01IS22086A.

REFERENCES

[1] Maha Kooli, Firas Kaddachi, Giorgio Di Natale, Alberto Bosio, Pascal Benoit, Lionel Torres, Computing reliability: On the differences

between software testing and software fault injection techniques, Microprocessors and Microsystems, Volume 50, 2017, Pages 102-112.

[2] C. Vitucci, D. Sundmark, M. Jägemar, J. Danielsson, A. Larsson and T. Nolte, "A Reliability-oriented Faults Taxonomy and a Recovery-

oriented Methodological Approach for Systems Resilience," 2022 IEEE 46th Annual Computers, Software, and Applications Conference

(COMPSAC), Los Alamitos, CA, USA, 2022, pp. 48-55, doi: 10.1109/COMPSAC54236.2022.00016.

[3] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann and O. Spinczyk, "FAIL*: An Open and Versatile Fault-Injection

Framework for the Assessment of Software-Implemented Hardware Fault Tolerance," 2015 11th European Dependable Computing

Conference (EDCC), Paris, France, 2015, pp. 245-255, doi: 10.1109/EDCC.2015.28.

[4] .J. . -H. Oetjens et al., "Safety evaluation of automotive electronics using Virtual Prototypes: State of the art and research challenges,"

2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2014, pp. 1-6.

[5] B. -A. Tabacaru, M. Chaari, W. Ecker, T. Kruse and C. Novello, "Fault-effect analysis on system-level hardware modeling using virtual

prototypes," 2016 Forum on Specification and Design Languages (FDL), Bremen, Germany, 2016, pp. 1-7.

[6] V. Herdt, H. M. Le, D. Große and R. Drechsler, "On the application of formal fault localization to automated RTL-to-TLM fault

correspondence analysis for fast and accurate VP-based error effect simulation - a case study," 2016 Forum on Specification and Design

Languages (FDL), Bremen, Germany, 2016, pp. 1-8.

[7] J. Perez, M. Azkarate-askasua and A. Perez, "Codesign and Simulated Fault Injection of Safety-Critical Embedded Systems Using

SystemC," 2010 European Dependable Computing Conference, Valencia, Spain, 2010, pp. 221-229.

[8] L.A.B. Naviner, J.-F. Naviner, G.G. dos Santos, E.C. Marques, N.M. Paiva, FIFA: A fault-injection–fault-analysis-based tool for

reliability assessment at RTL level, Microelectronics Reliability, Volume 51, Issues 9–11, 2011, Pages 1459-1463, ISSN 0026-2714.

[9] KALITA, Limi. Socket programming. International Journal of Computer Science and Information Technologies, 2014, 5. Jg., Nr. 3, S.

4802-4807.

