

1

Towards a Hybrid Verification Environment for

Signal Processing SoCs

Jan Hahlbeck, Steffen Löbel, Chandana G P,

NXP Semiconductors Germany GmbH,

Hamburg, Germany

(jan.hahlbeck@nxp.com, steffen.loebel@nxp.com, chandana.guddenahllipalaksha@nxp.com)

Abstract—This paper describes a hybrid verification approach for radio signal processing SoCs in the automotive

domain. By providing tools and work flows for different methodologies in combination with an integrated regression

setup we enable and encourage verification teams to mix functional and formal verification based on the stated

verification task. By means of an example design the hybrid verification approach gets demonstrated.

Keywords—Functional verification, Formal verification, Hybrid verification, UVM, MATLAB Simulink

I. INTRODUCTION

Verification in the field of automotive System-on-Chips (SoCs) is a challenging task in terms of different

design aspects. We incorporate signal processing functionality, paired with high data rates and automotive

compliant requirements. To cope with these verification challenges we are mixing different verification

approaches and methodologies. Beside well-known and established Universal Verification Methodology (UVM)

testbenches we are working with MATLAB Simulink reference models to verify signal processing algorithms.

These models are transformed into C/C++ code which can be linked via Direct Programming Interface (DPI) into

the testbenches [1]. Beside using UVM and MATLAB Simulink reference models we have extended our

verification environment in the past years with formal verification based tools to benefit from the power of formal

property checking and automated formal verification applications like structural connectivity checks, where the

tool takes over the property generation. The recent Wilson Functional Verification Study [2] has shown that the

adoption of formal techniques and automated formal verification significantly increased over the last years and

gets more and more attention in the semiconductor industry. We can acknowledge this trend. Our goal is to enable

verification engineers to decide based on the nature of a verification task to accomplish it either by formal

techniques or functional simulation with a seamless transition between both worlds. Furthermore we want to

convince and motivate verification engineers to try out formal techniques and build up trust for further

methodology shift. Formal-friendly blocks are getting identified and selected based on the design characteristics

and complexity like shown in [3]. We apply formal structural connectivity checks (CONN), formal property

verification (FPV), and formal unreachability analysis (UNR) based on Jasper RTL apps [4]. This paper

demonstrates how such a hybrid verification environment looks like for a signal processing subsystem which is

part of a radio SoC in the automotive domain. The environment contains so called toolkits which provide code

generation tools, common command scripts, quality checkers and a framework for regression runs including an

interface to the requirement database. The underlying regression setup allows a coverage database merge of all

functional and formal test runs.

II. HYBRID VERIFICATION ENVIRONMENT

A. Overview

Central point of our hybrid verification environment are so called toolkits which provide access to tools,

code generators and command scripts for different methodologies with respect to the current phase of a

verification cycle. A verification team can take advantage of a ready-to-use setup for the selected methodology.

Regardless of the chosen approach, all verification artifacts are getting combined and merged in a common

regression setup. Figure 1 shows which phases and activities are part of a full verification cycle starting from a

Register Transfer Level (RTL) design delivery towards a fully verified verification release.

mailto:jan.hahlbeck@nxp.com
mailto:steffen.loebel@nxp.com
mailto:chandana.guddenahllipalaksha@nxp.com

2

Hybrid Verification Environment

MATLAB Simulink UVM Toolkit Formal Toolkit Regression Toolkit

Phase 1.1
Structural

Connectivity
(CONN)

Phase 1.2
MATLAB Model

Generation

Phase 2.1
Functional
Testbench

(UVM)

Phase 2.2
Formal

Testbench
(FPV)

Phase 3.1
Regression &

Coverage
Analysis

Phase 3.2
Unreachability

Analysis
(UNR)

RTL Release

MATLAB Simulink
Models

Test
Specifications

Verification
Release

Regression
Report

Quality
Reports

Figure 1: Overview of the hybrid verification environment and verification phases

There are three inputs into a verification cycle:

1. RTL release

2. MATLAB Simulink models for signal processing modules of the RTL

3. Test specifications with respect to the design requirements including verification goals

Based on these inputs a verification team goes through six different phases to achieve a verification sign-off which

includes the following deliveries:

1. Verification release including all functional and formal testbenches

2. Regression report including mapped test specifications and coverage metrics

3. Quality reports e.g. a testbench linter report based on [5]

In the following sections we will briefly explain each phase and provide an exemplary design example to

demonstrate how we apply the hybrid verification approach on a given RTL top level.

B. Phase 1.1 – Structural Connectivity

Structural connectivity checks belong to the family of automated formal verification tools and we apply

them to ensure that we have a fully connected top level RTL. Figure 2 shows our connectivity flow. We apply

two flavors: Reverse connectivity to create a golden reference connectivity map and regular connectivity to check

whether a RTL update still contains all connections. New design deliveries can be checked within a short period

of time and missing or modified connections can be added by the help of the reverse connectivity feature. The

Formal Toolkit provides a code generator to create an initial connectivity environment, command scripts,

regression hooks and reporting mechanisms. Connectivity targets are provided as part of the test specifications.

Usually we apply CONN on the first hierarchy level of the top level RTL to ensure that all integrated blocks are

assembled correctly. Furthermore this guarantees the data integrity when multiple UVM block level scoreboards

are concatenated or MATLAB reference models are used to verify signal processing functionality.

Hybrid Verification Environment

Formal Toolkit

Connectivity
Maps

Run
Reverse Connectivity

and review maps

Run
Regular Connectivity

Setup / Update
Connectivity
Environment

RTL Release

Test
Specifications

Connectivity
Testbench

Connectivity Targets

Phase 1: Structural Connectivity

Code
Generator

Command
Scripts

Command
Scripts

Figure 2: Structural connectivity flow

3

Hybrid Verification Environment

MATLAB Simulink
Models

Run MATLAB
Simulink Coder

MATLAB
DPI Wrapper

Creation

C/C++
Models

DPI Reference
Models

MATLAB Simulink

Phase 1.2: MATLAB Model Generation

Test
Specifications

Required Accuracy

MATLAB
Scripts

DPI
Wrappers

MATLAB
Scripts

DPI Reference Model
Creation

Figure 3: MATLAB Simulink model generation flow

C. Phase 1.2 – MATLAB Model Generation

Signal processing modules are developed with the help of MATLAB and MATLAB Simulink. To ensure

that the RTL matches the expected behaviour we generate System Verilog DPI verification modules in three steps

like depicted in Figure 3. Firstly we generate C/C++ reference models using the MATLAB Simulink Coder. In a

second step these functions are integrated into DPI wrappers. And finally these wrappers are instantiated in a

reference model which might contain one or more DPI wrappers plus additional data checks of observed and

expected data. The resulting reference models are instantiated in the functional testbench in parallel to the UVM

environment. The final pass or fail criteria of a functional UVM test considers both, the UVM status as well as

internal error counters of all existing reference models.

D. Phase 2.1 – Functional Verification

The functional verification takes place with a well-known UVM testbench and a mix of constrained

random tests and directed tests. Scoreboards ensure the data integrity and coverage collectors enable metric driven

verification. Standard protocol interfaces like AMBA AHB, APB or AXI are verified by using Verification IPs

(VIPs). Beside the UVM testbench we implement and maintain System Verilog Assertions (SVAs) for dedicated

verification tasks like clock period or duty cycle checks. Properties which are identified to be re-usable for FPV

can be shared with the formal verification team. Figure 4 shows the functional verification flow where a

verification team creates a UVM testbench which gets handed over to the regression setup. The UVM toolkit

provides testbench generators and a testbench linting tool including linter rules to ensure that all UVM

components, sequences and tests are aligned with our internal coding guidelines.

Tests

Tests
Functional

Test Development

Hybrid Verification Environment

UVM Toolkit

Tests
Functional

Test Development

Run
Functional
Simulation

Setup / Update UVM
Testbenches

RTL Release &
Reference Models

UVM
Testbench

Functional Coverage
Development

Covergroups

SVA Property
Development

Simulation
Properties

Phase 2.1: Functional Verification

Code
Generator

Exchange
with Formal
Verification

Test
Specifications

Common
Properties

Run
Testbench

Linter

Linter Rules

Quality Feedback

Figure 4: Functional verification flow for UVM testbenches

4

Hybrid Verification Environment

Formal
Properties

SVA Property
Development

Run
Formal
Prove

Setup / Update
Formal Testbench

RTL Release
Formal

Testbench

Formal Toolkit

Phase 2.2: Formal Verification

Code
Generator

Exchange with
Functional
Verification

Test
Specifications

Common
Properties

Command
Scripts

Figure 5: Formal property verification flow

E. Phase 2.2 – Formal Property Verification

Beside automated formal verification we enable verification engineers to use formal property verification

(FPV) for verification tasks where functional verification cannot be done exhaustively at a manageable effort.

Additionally there is a high demand to use FPV for bug hunting, isolation and exploration of already discovered

bugs, especially when there are doubts and findings in simulation based tests. Formal testbenches may include

Assertion-based VIPs in case there are standard protocol interfaces. Properties are getting implemented by using

SVAs. Figure 5 depicts the formal verification flow for formal testbenches. The Formal Toolkit provides

command scripts, regression hooks, reporting mechanisms and code generators to generate initial skeletons of

formal testbenches. We provide a possibility the exchange properties with the functional verification team by

deploying them into separate interfaces. For properties which are marked for dual use – in functional simulation

and FPV - we avoid liveness properties, usage of free variables and extended use of cover properties to keep them

simulation friendly like recommended by [6].

F. Phase 3.1 – Regression Setup and Coverage Analysis

The regression setup is directly linked to the requirements tooling and contains a full list of test

specifications for the given design release. The setup is capable to execute both functional and formal test runs

and merge the results into a single coverage database. Figure 6 shows that formal and functional tests are executed

in two separated regression steps as different testbench hierarchies require a post-processing to map the FPV

results into the UVM testbench hierarchy. A so called verification plan is used to map the regression results on

the test specifications. Test specifications can be fulfilled either by directed tests, constrained random tests,

structural coverage, functional coverage, assertions, or formal test runs like CONN or FPV.

G. Phase 3.2 – Unreachability Analysis

To support the structural coverage analysis and closure after a regression run we use automated formal

unreachability (UNR) analysis to detect unreachable parts of the design. This allows verification teams to focus

on the remaining reachable coverage and provides valuable feedback to design engineers in case a finding is

caused by a faulty design description rather than by design parameterization. After a manual code review all

unreachable parts of the design are getting excluded by using a refinement file which gets passed to the coverage

analysis like shown in Figure 6. To mitigate the effort of UNR in terms of RTL review and extensive runtimes we

follow three basic rules:

1. First UNR run only when at least 70% coverage gets reached by simulation based regression

2. Re-run of UNR only for major design updates to reduce the review effort

3. UNR is allowed to start at uninitialized state to optimize state space exploration, with an accepted risk

of having false negatives

5

Hybrid Verification Environment

Regression Toolkit

Unreachability
Analysis (UNR)

Coverage Analysis &
Specification

Mapping

Run Regression
UVM

Testbenches

Formal
Testbenches

(CONN + FPV)
Run Regression

Simulation
Database

Formal
Database

Test
Specifications

Merged
Regression
Database

Regression
Report

UNR
Refinement

Regression
Database Merge

Phase 3: Regression Setup, Coverage and Unreachability Analysis

Run Testbench Linter
Quality
Report

Regression
Tooling

Figure 6: Regression setup, coverage and unreachability analysis flow

III. APPLYING HYBRID VERIFICATION

In this section we will give an example how we apply the hybrid verification flow for a common design

in the radio frequency domain. The given design under test (DUT) contains the following modules:

• AXI2APB bridge to access control registers of every module

• Three wideband filters with corresponding MATLAB Simulink models

• Three smallband filters with corresponding MATLAB Simulink models

• Cross-bar to allow dynamic switching from any wideband filter to any smallband filter

• Data Packetizer which encapsulates the filter output into a dedicated streaming protocol

• Write Direct Memory Access (WDMA) engine which allows configurable memory access via standard

protocols

• Synchronization unit to trigger filter operations and DMA operations

• Interrupt distribution unit to collect and filter all subsystem interrupt lines

Based on the design characteristics, test specifications, estimated effort and team experience we select

suitable verification approaches for each module. Figure 7 shows the architecture overview plus the partitioning

of the subsystem verification into different methodologies. The signal processing functionality represented by the

wideband and smallband filters gets verified by using bit-accurate MATLAB reference models. Additionally a

small portion of critical logic in the wideband filters gets checked by a FPV testbench to proof the absence of

possible deadlocks. Modules like the AXI2APB bridge and the Write DMA are getting verified purely by

functional verification using directed and constrained randomized UVM tests in combination with scoreboards

and functional coverage collectors which are attached to passive UVM agents. The Filter Crossbar and the

Interrupt Distribution module are getting fully verified using FPV to handle the number of possible combinations

and data range variety without the need to create all possible stimuli in a functional testbench. For the Data

Packetizer and the Synchronization Unit we have a hybrid verification approach where critical parts of the design

are verified by using FPV and the remaining parts by using UVM. In total we end up with a single UVM testbench,

one Connectivity testbench and five FPV testbenches. In addition we generate two MATLAB reference models

which are instantiated three times each.

6

Radio Signal Processing Subsystem

Filter

Crossbar

MATLAB

Reference ModelsWideband

Filter 0

Wideband

Filter 1

Wideband

Filter 2

Formal

Verification

Smallband

Filter 0

Smallband

Filter 1

Smallband

Filter 2

Functional

Verification
AXI2APB Bridge

Interrupt DistributionSynchronization Unit

Data

Packetizer

Write

DMA

Structural

Connectivity

Figure 7: Exemplary radio signal processing subsystem with data flow from left to right

A. Coherent Data Checks

Zooming into one possible data path from the design inputs to the design outputs demonstrates the

strength of the hybrid verification approach. Figure 8 shows the path from Wideband Filter 0 through the Filter

Crossbar to Smallband Filter 0. The filtered data get picked up by the Data Packetizer and finally transferred to

the Write DMA module which drives the design outputs towards a memory interfaces. The complete data path is

either covered using MATLAB DPI models, UVM scoreboards or a full FPV proof to ensure the data integrity

throughout. Formal connectivity checks ensure that all output probes are directly connected with the input probes

of the next checker e.g. the MATLAB model of Smallband Filter 0 is connected to the filter data output which

gets used as data input of the Data Packetizer UVM scoreboard. By using this approach we can re-use already

existing block level scoreboards without any modifications or the need to create additional scoreboards.

B. Shared Properties

In case there are common properties which shall be shared between functional simulation and FPV run

we encapsulate them in System Verilog interfaces, which can be instantiated in the UVM testbench top level as

well as in the FPV testbench like depicted in Figure 9. To avoid runtime penalties of SVAs on the simulation we

keep this number limited.

Ensured Connectivity

Filter

Crossbar

Wideband

Filter 0

Smallband

Filter 0

Data

Packetizer

Write

DMA
UVM VIP

MATLAB

DPI Model

MATLAB

DPI Model

UVM

Scoreboard

UVM VIP

Full

Formal Proof

Partial

Formal Proof

UVM

Scoreboard

Partial

Formal Proof

Figure 8: Coherent data check flow

7

UVM Testbench Toplevel

FPV Testbench

Passive UVM Environment

Passive Interface

Data

Packetizer

UVM

Scoreboard

Virtual

Interface

UVM

Agent

Dedicated SVAs:

(Assert, assume, cover)Common SVAs

Figure 9: Property sharing between functional and formal verification

C. MATLAB DPI Wrapper

The MATLAB Simulink Coder provides the same API for every module which requires a reference

model. The API consists of five functions: initialize, terminate, reset, output and update. Figure 10 shows how

these five function calls are integrated in a DPI wrapper module for a single Wideband Filter. An additional delay

stage gets inserted to allow cycle and bit accurate comparison with the DUT. In case a signal processing module

contains control registers the number of inputs will increase according to the number of controllable registers.

Data checkers and error counters are added in another wrapper level on top of the shown DPI wrapper.

module WidebandFilter_dpi_wrapper(

 input bit clk, reset,

 input logic signed [31:0] In_re, In_im,

 output logic signed [31:0] Out_re, Out_im

);

 chandle objhandle=null;

 logic signed [31:0] Out_re_temp, Out_im_temp;

 initial objhandle = DPI_WidebandFilter_initialize(objhandle);

 final DPI_WidebandFilter_terminate(objhandle);

 always @(posedge clk or posedge reset) begin

 if(reset == 1'b1) begin

 objhandle=DPI_WidebandFilter_reset(objhandle, In_re, In_im, Out_re_temp, Out_im_temp);

 Out_re <= Out_re_temp;

 Out_im <= Out_im_temp;

 end else begin

 DPI_WidebandFilter_output(objhandle, In_re, In_im, Out_re_temp, Out_im_temp);

 DPI_WidebandFilter_update(objhandle, In_re, In_im);

 Out_re <= Out_re_temp; // Delay stage to be in sync with DUT

 Out_im <= Out_im_temp; // Delay stage to be in sync with DUT

 end

 end

endmodule
Figure 10: MATLAB DPI wrapper example for a Wideband Filter

8

D. Regression Coverage Merge and Unreachability Analysis Results

Table 1 shows exemplary coverage measurements for some of the given modules to show how a formal

proof gets used to boost the coverage closure based on block, statement, expression and toggle coverage. The

values are based on a status in the late project phase. The Filter Crossbar for instance reaches 94% coverage in

functional simulation whereas the FPV testbench easily reaches 100%. By merging the coverage the total coverage

indicates that we do not need to implement more functional tests. Even for partial proves we can observe an

increase of 23% for the Data Packetizer and 22 % for the Synchronization Unit.

Table 1: Regression coverage merge results of functional and formal simulation (pre-UNR)

Module Properties Sim Coverage [%] Formal Coverage [%] Merged Coverage [%]

Wideband Filter 2 75 1.1 75

Filter Crossbar 106 94 100 100

Data Packetizer 150 65 75 88

Interrupt Distribution 66 95 100 100

Synchronization Unit 50 73 90 95

The unreachable analysis for the given example design takes around 15 minutes and marks 6% of the

entire RTL as unreachable. This fits the expectation when using highly parameterized signals processing modules.

Table 2 shows exemplary UNR numbers for selected modules. A highly generic filter module contains up to 7%

unreachable code parts whereas the findings for a highly optimized and dedicated module like the Data Packetizer

is zero. A partly generic module like the Write DMA fits in between with 2% unreachable code parts.

Table 2: Unreachability analysis results

Module Coverage pre-UNR [%] Coverage post-UNR [%] UNR [%]

DUT Top level 76 82 6

Wideband Filter 75 82 7

Smallband Filter 84 87 3

Data Packetizer 88 88 0

Write DMA 93 95 2

IV. SUMMARY

The presented hybrid verification environment enables our verification teams to take advantage of

different verification methodologies and approaches in a single verification cycle. The new degree of freedom

encourages verification engineers to choose the best possible approach for a given tasks without being limited in

the way of thinking. In six phases we generate MATLAB reference models, apply functional and formal

verification tools, and combine everything in a regression setup. An additional UNR run greatly supports the

coverage closure. In the future we plan to evaluate more automated formal verification tools and strengthen our

FPV knowledge to be ready for a further methodology shift.

V. REFERENCES

[1] Neal Okumura, Glenn Richards, "Co-Simulating Matlab/Simulink Models in a UVM Environment," in

DVCon US, 2015.

[2] H. Foster, "Functional Verification Study," Wilson Research Group, 2022.

[3] Keerthikumara Devarajegowda, Jeroen Vliegen, Goran Petrovity, Kawe Fotouh, "A Mutually-Exclusive

Deployment of Formal and Simulation Techniques Using Proof-Core Analysis," in DVCon Europe, 2017.

[4] Cadence, "Jasper RTL Apps," [Online]. Available: https://www.cadence.com/en_US/home/tools/system-

design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html. [Accessed 20

August 2023].

[5] AMIQ EDA, "Verissimo SystemVerilog Linter," [Online]. Available:

https://dvteclipse.com/products/verissimo-linter. [Accessed 20 August 2023].

[6] Erik Seligman, Tom Schubert, M.V. Achutha Kiran Kumar, Formal Verification: An Essential Toolkit for

Modern VLSI Design, Morgan Kaufmann, 2023.

