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Abstract—This paper describes a hybrid verification approach for radio signal processing SoCs in the automotive 

domain. By providing tools and work flows for different methodologies in combination with an integrated regression 

setup we enable and encourage verification teams to mix functional and formal verification based on the stated 

verification task. By means of an example design the hybrid verification approach gets demonstrated. 
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I.  INTRODUCTION 

Verification in the field of automotive System-on-Chips (SoCs) is a challenging task in terms of different 

design aspects. We incorporate signal processing functionality, paired with high data rates and automotive 

compliant requirements. To cope with these verification challenges we are mixing different verification 

approaches and methodologies. Beside well-known and established Universal Verification Methodology (UVM) 

testbenches we are working with MATLAB Simulink reference models to verify signal processing algorithms. 

These models are transformed into C/C++ code which can be linked via Direct Programming Interface (DPI) into 

the testbenches [1]. Beside using UVM and MATLAB Simulink reference models we have extended our 

verification environment in the past years with formal verification based tools to benefit from the power of formal 

property checking and automated formal verification applications like structural connectivity checks, where the 

tool takes over the property generation. The recent Wilson Functional Verification Study [2] has shown that the 

adoption of formal techniques and automated formal verification significantly increased over the last years and 

gets more and more attention in the semiconductor industry. We can acknowledge this trend. Our goal is to enable 

verification engineers to decide based on the nature of a verification task to accomplish it either by formal 

techniques or functional simulation with a seamless transition between both worlds. Furthermore we want to 

convince and motivate verification engineers to try out formal techniques and build up trust for further 

methodology shift. Formal-friendly blocks are getting identified and selected based on the design characteristics 

and complexity like shown in [3]. We apply formal structural connectivity checks (CONN), formal property 

verification (FPV), and formal unreachability analysis (UNR) based on Jasper RTL apps [4]. This paper 

demonstrates how such a hybrid verification environment looks like for a signal processing subsystem which is 

part of a radio SoC in the automotive domain. The environment contains so called toolkits which provide code 

generation tools, common command scripts, quality checkers and a framework for regression runs including an 

interface to the requirement database. The underlying regression setup allows a coverage database merge of all 

functional and formal test runs. 

II. HYBRID VERIFICATION ENVIRONMENT 

A. Overview 

 

Central point of our hybrid verification environment are so called toolkits which provide access to tools, 

code generators and command scripts for different methodologies with respect to the current phase of a 

verification cycle. A verification team can take advantage of a ready-to-use setup for the selected methodology. 

Regardless of the chosen approach, all verification artifacts are getting combined and merged in a common 

regression setup. Figure 1 shows which phases and activities are part of a full verification cycle starting from a 

Register Transfer Level (RTL) design delivery towards a fully verified verification release. 
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Figure 1: Overview of the hybrid verification environment and verification phases 

There are three inputs into a verification cycle: 

1. RTL release 

2. MATLAB Simulink models for signal processing modules of the RTL 

3. Test specifications with respect to the design requirements including verification goals 

Based on these inputs a verification team goes through six different phases to achieve a verification sign-off which 

includes the following deliveries: 

1. Verification release including all functional and formal testbenches 

2. Regression report including mapped test specifications and coverage metrics  

3. Quality reports e.g. a testbench linter report based on [5] 

In the following sections we will briefly explain each phase and provide an exemplary design example to 

demonstrate how we apply the hybrid verification approach on a given RTL top level. 

B. Phase 1.1 – Structural Connectivity 

Structural connectivity checks belong to the family of automated formal verification tools and we apply 

them to ensure that we have a fully connected top level RTL. Figure 2 shows our connectivity flow. We apply 

two flavors: Reverse connectivity to create a golden reference connectivity map and regular connectivity to check 

whether a RTL update still contains all connections. New design deliveries can be checked within a short period 

of time and missing or modified connections can be added by the help of the reverse connectivity feature. The 

Formal Toolkit provides a code generator to create an initial connectivity environment, command scripts, 

regression hooks and reporting mechanisms. Connectivity targets are provided as part of the test specifications. 

Usually we apply CONN on the first hierarchy level of the top level RTL to ensure that all integrated blocks are 

assembled correctly. Furthermore this guarantees the data integrity when multiple UVM block level scoreboards 

are concatenated or MATLAB reference models are used to verify signal processing functionality. 
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Figure 3: MATLAB Simulink model generation flow 

C. Phase 1.2 – MATLAB Model Generation 

Signal processing modules are developed with the help of MATLAB and MATLAB Simulink. To ensure 

that the RTL matches the expected behaviour we generate System Verilog DPI verification modules in three steps 

like depicted in Figure 3. Firstly we generate C/C++ reference models using the MATLAB Simulink Coder. In a 

second step these functions are integrated into DPI wrappers. And finally these wrappers are instantiated in a  

reference model which might contain one or more DPI wrappers plus additional data checks of observed and 

expected data. The resulting reference models are instantiated in the functional testbench in parallel to the UVM 

environment. The final pass or fail criteria of a functional UVM test considers both, the UVM status as well as 

internal error counters of all existing reference models. 

D. Phase 2.1 – Functional Verification 

The functional verification takes place with a well-known UVM testbench and a mix of constrained 

random tests and directed tests. Scoreboards ensure the data integrity and coverage collectors enable metric driven 

verification. Standard protocol interfaces like AMBA AHB, APB or AXI are verified by using Verification IPs 

(VIPs). Beside the UVM testbench we implement and maintain System Verilog Assertions (SVAs) for dedicated 

verification tasks like clock period or duty cycle checks. Properties which are identified to be re-usable for FPV 

can be shared with the formal verification team. Figure 4 shows the functional verification flow where a 

verification team creates a UVM testbench which gets handed over to the regression setup. The UVM toolkit 

provides testbench generators and a testbench linting tool including linter rules to ensure that all UVM 

components, sequences and tests are aligned with our internal coding guidelines. 
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Figure 4: Functional verification flow for UVM testbenches 
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Figure 5: Formal property verification flow 

E. Phase 2.2 – Formal Property Verification 

Beside automated formal verification we enable verification engineers to use formal property verification 

(FPV) for verification tasks where functional verification cannot be done exhaustively at a manageable effort. 

Additionally there is a high demand to use FPV for bug hunting, isolation and exploration of already discovered 

bugs, especially when there are doubts and findings in simulation based tests. Formal testbenches may include 

Assertion-based VIPs in case there are standard protocol interfaces. Properties are getting implemented by using 

SVAs. Figure 5 depicts the formal verification flow for formal testbenches. The Formal Toolkit provides 

command scripts, regression hooks, reporting mechanisms  and code generators to generate initial skeletons of 

formal testbenches. We provide a possibility the exchange properties with the functional verification team by 

deploying them into separate interfaces. For properties which are marked for dual use – in functional simulation 

and FPV - we avoid liveness properties, usage of free variables and extended use of cover properties to keep them  

simulation friendly like recommended by [6]. 

F. Phase 3.1 – Regression Setup and Coverage Analysis 

The regression setup is directly linked to the requirements tooling and contains a full list of test 

specifications for the given design release. The setup is capable to execute both functional and formal test runs 

and merge the results into a single coverage database. Figure 6 shows that formal and functional tests are executed 

in two separated regression steps as different testbench hierarchies require a post-processing to map the FPV 

results into the UVM testbench hierarchy. A so called verification plan is used to map the regression results on 

the test specifications. Test specifications can be fulfilled either by directed tests, constrained random tests, 

structural coverage, functional coverage, assertions, or formal test runs like CONN or FPV.  

G. Phase 3.2 – Unreachability Analysis 

To support the structural coverage analysis and closure after a regression run we use automated formal 

unreachability (UNR) analysis to detect unreachable parts of the design. This allows verification teams to focus 

on the remaining reachable coverage and provides valuable feedback to design engineers in case a finding is 

caused by a faulty design description rather than by design parameterization. After a manual code review all 

unreachable parts of the design are getting excluded by using a refinement file which gets passed to the coverage 

analysis like shown in Figure 6. To mitigate the effort of UNR in terms of RTL review and extensive runtimes we 

follow three basic rules: 

1. First UNR run only when at least 70% coverage gets reached by simulation based regression 

2. Re-run of UNR only for major design updates to reduce the review effort 

3. UNR is allowed to start at uninitialized state to optimize state space exploration, with an accepted risk 

of having false negatives 
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Figure 6: Regression setup, coverage and unreachability analysis flow 

III. APPLYING HYBRID VERIFICATION 

In this section we will give an example how we apply the hybrid verification flow for a common design 

in the radio frequency domain. The given design under test (DUT) contains the following modules: 

 

• AXI2APB bridge to access control registers of every module 

• Three wideband filters with corresponding MATLAB Simulink models 

• Three smallband filters with corresponding MATLAB Simulink models 

• Cross-bar to allow dynamic switching from any wideband filter to any smallband filter 

• Data Packetizer which encapsulates the filter output into a dedicated streaming protocol 

• Write Direct Memory Access (WDMA) engine which allows configurable memory access via standard 

protocols 

• Synchronization unit to trigger filter operations and DMA operations 

• Interrupt distribution unit to collect and filter all subsystem interrupt lines 

Based on the design characteristics, test specifications, estimated effort and team experience we select 

suitable verification approaches for each module. Figure 7 shows the architecture overview plus the partitioning 

of the subsystem verification into different methodologies. The signal processing functionality represented by the 

wideband and smallband filters gets verified by using bit-accurate MATLAB reference models. Additionally a 

small portion of critical logic in the wideband filters gets checked by a FPV testbench to proof the absence of 

possible deadlocks. Modules like the AXI2APB bridge and the Write DMA are getting verified purely by 

functional verification using directed and constrained randomized UVM tests in combination with scoreboards 

and functional coverage collectors which are attached to passive UVM agents. The Filter Crossbar and the 

Interrupt Distribution module are getting fully verified using FPV to handle the number of possible combinations 

and data range variety without the need to create all possible stimuli in a functional testbench. For the Data 

Packetizer and the Synchronization Unit we have a hybrid verification approach where critical parts of the design 

are verified by using FPV and the remaining parts by using UVM. In total we end up with a single UVM testbench, 

one Connectivity testbench and five FPV testbenches. In addition we generate two MATLAB reference models 

which are instantiated three times each. 
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Figure 7: Exemplary radio signal processing subsystem with data flow from left to right 

A. Coherent Data Checks 

Zooming into one possible data path from the design inputs to the design outputs demonstrates the 

strength of the hybrid verification approach. Figure 8 shows the path from Wideband Filter 0 through the Filter 

Crossbar to Smallband Filter 0. The filtered data get picked up by the Data Packetizer and finally transferred to 

the Write DMA module which drives the design outputs towards a memory interfaces. The complete data path is 

either covered using MATLAB DPI models, UVM scoreboards or a full FPV proof to ensure the data integrity 

throughout. Formal connectivity checks ensure that all output probes are directly connected with the input probes 

of the next checker e.g. the MATLAB model of Smallband Filter 0 is connected to the filter data output which 

gets used as data input of the Data Packetizer UVM scoreboard. By using this approach we can re-use already 

existing block level scoreboards without any modifications or the need to create additional scoreboards. 

B. Shared Properties 

In case there are common properties which shall be shared between functional simulation and FPV run 

we encapsulate them in System Verilog interfaces, which can be instantiated in the UVM testbench top level as 

well as in the FPV testbench like depicted in Figure 9. To avoid runtime penalties of SVAs on the simulation we 

keep this number limited. 
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Figure 8: Coherent data check flow 
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Figure 9: Property sharing between functional and formal verification 

 

C. MATLAB DPI Wrapper 

The MATLAB Simulink Coder provides the same API for every module which requires a reference 

model. The API consists of five functions: initialize, terminate, reset, output and update. Figure 10 shows how 

these five function calls are integrated in a DPI wrapper module for a single Wideband Filter. An additional delay 

stage gets inserted to allow cycle and bit accurate comparison with the DUT. In case a signal processing module 

contains control registers the number of inputs will increase according to the number of controllable registers.  

Data checkers and error counters are added in another wrapper level on top of the shown DPI wrapper. 

 

module WidebandFilter_dpi_wrapper( 

  input bit clk, reset, 

  input logic signed [31:0] In_re, In_im, 

  output logic signed [31:0] Out_re, Out_im 

); 

  chandle objhandle=null; 

  logic signed [31:0] Out_re_temp, Out_im_temp; 

 

  initial objhandle = DPI_WidebandFilter_initialize(objhandle); 

  final DPI_WidebandFilter_terminate(objhandle); 

 

  always @(posedge clk or posedge reset) begin 

    if(reset == 1'b1) begin 

      objhandle=DPI_WidebandFilter_reset(objhandle, In_re, In_im, Out_re_temp, Out_im_temp); 

      Out_re <= Out_re_temp; 

      Out_im <= Out_im_temp; 

    end else begin 

      DPI_WidebandFilter_output(objhandle, In_re, In_im, Out_re_temp, Out_im_temp); 

      DPI_WidebandFilter_update(objhandle, In_re, In_im); 

      Out_re <= Out_re_temp; // Delay stage to be in sync with DUT 

      Out_im <= Out_im_temp; // Delay stage to be in sync with DUT 

     end 

  end 

endmodule 
Figure 10: MATLAB DPI wrapper example for a Wideband Filter 
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D. Regression Coverage Merge and Unreachability Analysis Results 

Table 1 shows exemplary coverage measurements for some of the given modules to show how a formal 

proof gets used to boost the coverage closure based on block, statement, expression and toggle coverage. The 

values are based on a status in the late project phase. The Filter Crossbar for instance reaches 94% coverage in 

functional simulation whereas the FPV testbench easily reaches 100%. By merging the coverage the total coverage 

indicates that we do not need to implement more functional tests. Even for partial proves we can observe an 

increase of 23% for the Data Packetizer and 22 % for the Synchronization Unit. 

 
Table 1: Regression coverage merge results of functional and formal simulation (pre-UNR) 

Module Properties Sim Coverage [%] Formal Coverage [%] Merged Coverage [%] 

Wideband Filter 2 75 1.1 75 

Filter Crossbar 106 94 100 100 

Data Packetizer 150 65 75 88 

Interrupt Distribution 66 95 100 100 

Synchronization Unit 50 73 90 95 

 

The unreachable analysis for the given example design takes around 15 minutes and marks 6% of the 

entire RTL as unreachable. This fits the expectation when using highly parameterized signals processing modules. 

Table 2 shows exemplary UNR numbers for selected modules. A highly generic filter module contains up to 7% 

unreachable code parts whereas the findings for a highly optimized and dedicated module like the Data Packetizer 

is zero. A partly generic module like the Write DMA fits in between with 2% unreachable code parts. 
 

Table 2: Unreachability analysis results 

Module Coverage pre-UNR [%] Coverage post-UNR [%] UNR [%] 

DUT Top level 76 82 6 

Wideband Filter 75 82 7 

Smallband Filter 84 87 3 

Data Packetizer 88 88 0 

Write DMA 93 95 2 

IV. SUMMARY 

The presented hybrid verification environment enables our verification teams to take advantage of 

different verification methodologies and approaches in a single verification cycle. The new degree of freedom 

encourages verification engineers to choose the best possible approach for a given tasks without being limited in 

the way of thinking. In six phases we generate MATLAB reference models, apply functional  and formal 

verification tools, and combine everything in a regression setup. An additional UNR run greatly supports the 

coverage closure. In the future we plan to evaluate more automated formal verification tools and strengthen our 

FPV knowledge to be ready for a further methodology shift. 
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