

1

A UVM Test-bench Skeleton Leveraging the

Event Pool and Sequence Layering

Marcela Zachariasova, Jiri Bartak, Tomas Pehnelt, Jan Riha

ASICentrum, EM Microelectronic, Czech Republic, ({marcela.zachariasova, jiri.bartak,

tomas.pehnelt, jan.riha}@asicentrum.com)

Abstract— EM Microelectronic focuses on ultra-low power, low voltage integrated circuits for battery-operated and

field-powered applications. It means that from the verification perspective, system-level mixed-signal test-benches with

many power-aware checks are usually developed. The main contribution of this paper is a highly reusable UVM test-

bench skeleton, which can be adapted step by step to verify the blocks of the system, as well as the whole System on

Chip (SoC), including the HW-SW co-verification with firmware. This test-bench is top-level based; its unique feature

is the possibility of parallel development of individual blocks and their UVCs by different verification engineers at the

same time while sharing only a few common structures where these people cooperate: UVM layering (with translation)

of system transactions, a global register model, processing of interrupts and a global UVM event pool. This feature

allows a significant acceleration of development and is essential for reuse in future projects.

Keywords— SoC test-bench, UVM layering, UVM reuse

I. INTRODUCTION AND CONTRIBUTION

The Universal Verification Methodology (UVM) is currently the most widely used verification methodology

[1]. It utilizes SystemVerilog as the primary verification language, providing an object-oriented programming

approach and the base classes for all UVM test-bench components in the UVM library. The UVM library allows

advanced techniques such as constrained random stimulus generation, coverage-driven verification, and self-

checking mechanisms.

However, despite these indisputable benefits, the UVM test-bench can become disorganized, especially when

verifying SoCs where many people cooperate to build the test-bench. This happens not due to a lack of experience

or disregard for UVM rules but rather because each person has their own programming style and strategy for

implementing test-bench blocks, sequences, tests, or reference functionality. Therefore, this paper's idea is to

develop a test-bench skeleton architecture that establishes some rules but simultaneously allows a good level of

freedom in the implementation without losing a sound structure over time.

EM Microelectronic invested a significant amount of effort into developing a test-bench architecture that is

suitable for most of their SoC projects. In addition, this architecture allows a high level of reuse for derivative

projects. The company specializes in ultra-low power, low voltage integrated circuits for battery-operated and field-

powered applications such as access control, radio frequency identification, alarm and security systems, and sensor

signal processing. Therefore, from a verification point of view, they are developing system-level mixed-signal test-

benches with many power-aware checks and their own Universal Verification Components (UVCs).

This paper demonstrates a verification environment for a typical EM Microelectronic SoC consisting of one

central bus, for example, AMBA AHB or AXI, one central processor unit (CPU), several digital blocks, and several

analog blocks (in the presented test-bench, the digital portion of the design is covered, for modeling analog behavior

SystemVerilog behavioral models are used). The main contribution is a description of the UVM test-bench skeleton

architecture (including code snippets), which can be applied quickly from the start of every project, can be easily

customized and extended, and encourages the reuse of existing UVCs. Additionally, it can be configured to support:

· block-level verification through dedicated UVCs,

· top-level verification through a group of UVCs,

· top-level verification through firmware developed for a CPU.

mailto:marcela.zachariasova,%20jiri.bartak,%20tomas.pehnelt,%20jan.riha%7d@asicentrum.com
mailto:marcela.zachariasova,%20jiri.bartak,%20tomas.pehnelt,%20jan.riha%7d@asicentrum.com

2

Despite the standalone techniques described in this paper not being new (referenced in the related work in

Section II), their assembly into a configurable and multi-purpose test-bench is unique. Further sections

consequently describe this test-bench. Section III outlines how it is configured to support block-level verification.

It describes how to start with an empty test-bench skeleton containing a UVM sequence layering, a global UVM

event pool, a global register model, a UVM configuration, and how to add new blocks (into the design as well as

into the test-bench) step by step while building a comprehensive SoC in the process. Once the entire Design Under

Test (DUT) and the test-bench are fully assembled, the focus is on verifying block interactions. Section IV explains

how to check those interactions without the CPU being active - meaning that all CPU actions are substituted with

the actions of UVCs. This is beneficial when the intention is to have everything under the UVM test-bench control.

On the other hand, sometimes it is useful to check the firmware portion of the system and thus have the CPU active

during the verification. In the proposed test-bench architecture, it means a different configuration of UVCs and

having the tests divided into SystemVerilog and C parts. This approach is described in Section V. The motivation

is a good structure, but also reuse. Therefore, Section VI shares ideas on how to reuse existing UVCs when starting

a new SoC project. Section VII concludes the paper.

II. RELATED WORK

As stated in the introduction, existing techniques are assembled into a unique concept. And because some of

them are not widespread, a brief introduction is provided, including a reference to a more detailed description.

A. UVM sequence layering

Many protocols have a hierarchical definition. For example, PCI Express or USB 3.0 have Transaction,

Transport, and Physical Layer. Alternatively, a protocol-independent layer on top of a standard protocol is needed

to create protocol-independent verification components (for example, TLM 2.0 over AMBA AHB). All these cases

require the deconstruction of transactions (UVM sequence items) of the higher-level protocol into transactions of

the lower-level protocol to stimulate the bus and, in the analysis data path, the reconstruction of higher-level

transactions from the lower-level transactions [2]. Such transformations are needed in the proposed test-bench

skeleton for translating/reconstructing transactions of UVCs (including register transactions) into bus transactions

and vice versa.

B. UVM events and UVM event pool

A pool of UVM events is available and shared between all components in the UVM environment. Whenever

an event is needed, it is possible to pick one of the events and call it by name. Once the event is obtained, it can

either be triggered immediately or waited upon [3] [4]. In the proposed test-bench skeleton, the UVM event pool is

used for interrupt processing and, in cases where multiple parts of the system are involved, register fields prediction.

The UVM event pool simplifies the integration and reuse of UVCs but requires attention to the UVM event naming

scheme to avoid a collision resulting in unwanted behavior.

III. BLOCK-LEVEL VERIFICATION

Even when verifying a single sub-block, the objective is to think about the DUT and the test-bench from the

top-level perspective. This is an essential prerequisite for all further work. The concept will be demonstrated on a

series of block diagrams and code snippets, starting with a block diagram in Figure 1. It illustrates a simplified SoC

consisting only of two blocks: Block A and Block B, but the principles remain the same also for more complex

systems. The further description focuses on Block A and its UVC; therefore, only these two are highlighted in

orange in Figure 1.

According to the specification, Block A should be connected to a bus via a bus interface. It is also known that

the configuration of this block is register-based. Whenever a particular computation is completed, an interrupt for

the CPU is generated through the IRQ interface. Eventually, this block can have a digital-analog interface for

communicating with its analog counterpart.

3

 A verification engineer will usually implement a dedicated block-level test-bench for Block A while providing

stimuli to all the needed interfaces by UVM drivers and monitoring the responses by UVM monitors/subscribers.

However, when thinking from the top-level test-bench perspective, a different approach needs to be applied, and

more implementation time to be invested at the beginning into the test-bench skeleton. This will save time in the

future when verifying other sub-blocks and the entire system. he following three parts are essential for the test-

bench skeleton:

First, BUS UVC must be implemented. It is responsible for handling bus transactions. At the same time, this

UVC is a mediator between the DUT and the test-bench to ensure consistent communication between UVCs and

their counterpart DUT blocks. BUS UVC is depicted in all Figures describing different verification stages: block-

level verification (Figure 1), top-level verification without CPU (Figure 9), and top-level verification with CPU

(Figure 10). An example of BUS UVC can be AHB-Lite UVC, containing standard UVM components such as AHB-

Lite virtual interface, sequence item, sequences in the sequence library, driver, monitor, agent, environment, or base

test.

Second, the translation of all UVC transactions to bus transactions and backward translation of bus transactions

to UVC transactions must be executed to achieve independence of the interfaces of the UVCs from the test-bench

skeleton. For this purpose, a block called ALL2BUS / BUS2ALL layering was implemented (visible in all Figures

describing different verification stages).

Figure 2 and Figure 3 demonstrate some code from the layering, in particular, the translation of the AHB-Lite

transaction's size to the register transaction's size and vice versa.

 /**
 * Transforms AHB HSIZE into number of bits

* @param size - AHB HSIZE
* @return number of bits in transaction
*/

 function integer ahb_2_register_subscriber::translate_size(ahb_lite_trans_size_t size);
 case (size)
 AHBL_BYTE : translate_size = 8;

 AHBL_HALFWORD : translate_size = 16;
 AHBL_WORD : translate_size = 32;
 default : translate_size = -1;
 endcase

 endfunction : translate_size

Figure 2: Size translation between the AHB-Lite transaction and the register transaction.

Figure 1: Block-level control and data flow example for Block A.

4

 /**
 * Translate number of bits into corresponding AHB HSIZE value
 * @param n_bits - number of bits in transaction
 * @return AHB HSIZE value
 */

 function ahb_lite_trans_size_t register_2_ahb_sequence::translate_size(int n_bits);
 int n_bytes = (n_bits-1)/8+1;

 case (n_bytes)
 1 : translate_size = AHBL_BYTE;
 2 : translate_size = AHBL_HALFWORD;
 3 : translate_size = AHBL_WORD;
 4 : translate_size = AHBL_WORD;
 default : translate_size = AHBL_MAX_SIZE;
 endcase;

 endfunction : translate_size

Figure 3: Size translation between the register transaction and the AHB-Lite transaction.

Third, a global register model (Register Abstraction Layer, RAL) should be implemented. It contains the global

register block, the register adapter, and the register environment. When the register block for a UVC is available, it

is registered as a sub-block to the global register model. See function connect_reg_block in Figure 4. Thanks

to this inclusion, it is possible to access all registers hierarchically while implementing the tests.

 /**
 * Connect - connecting block-level uvm_reg_block to the proj_reg_block

 * @param phase - UVM phase
 */

 function void proj_reg_block::connect_reg_block(uvm_reg_block reg_block,
 uvm_reg_map reg_map,
 string hdl_path = "",
 bit[31:0] offset = 0);
 //Connecting register block to global register block, and fixing HDL paths
 reg_block.clear_hdl_path("ALL");
 reg_block.add_hdl_path(hdl_path);
 reg_block.set_parent(this);
 add_block(reg_block);
 //Adding reg_map from reg_block to project register map
 m_reg_map.add_submap(reg_map, offset & 32'hFFFF_FFFF);

 endfunction : connect_reg_block

Figure 4: Function for connecting the UVC’s register block to the global register block.

In general, UVCs may communicate various types of transactions towards DUT, monitor responses and

compare them with reference data from predictors, or just analyze communication, e.g., to do coverage analysis. In

the following text, it is described how such communication can look like while being abstract enough to give a

reader an option to adapt these ideas to different verification scenarios.

Figure 5 illustrates a detailed organization of Block A UVC, which communicates the following transactions:

1. Register transactions (REG trans in Figure 5): RAL is used for verifying all the registers of Block A.

The communication is bidirectional:

o Writing to DUT registers (UVC stimulates Block A). WRITE register operations are initiated

using RAL, which is a part of the UVC.

Figure 5: Block A details.

5

o Reading from DUT registers (Block A monitoring). Using RAL, READ, or MIRROR register

operations are initiated to analyze the registers' changes in Block A, to check the results of

performed operations (if these are stored to registers), or to check various register settings

and flags. Monitored data can be automatically compared to the predicted data (a predictor

inside the UVC can make the registers' prediction).

All register transactions must be translated to/from bus transactions. For this purpose, ALL2BUS /

BUS2ALL layering is used.

2. Over-the-bus port transactions (PORT trans A1 in Figure 5): They indirectly operate with the port

A1 of Block A via the central bus. From the Block A UVC point of view, bidirectional communication

is performed again:

o Port A1 stimulation from UVC. Stimuli originated in the UVC are thanks to the ALL2BUS

layering translated to the bus transactions, which are sent directly to the port A1 of Block A.

Furthermore, it can be noticed in Figure 5 that input stimuli can be (directly or via the depicted

input monitor) forwarded to the predictor block of the UVC. The predicted reference outputs

are sent to Scoreboard.

o Port A1 monitoring in UVC. Outputs of Block A (visible as bus transactions) are translated

via BUS2ALL layering to the output transactions for the UVC and sent via the output monitor

to Scoreboard. Scoreboard compares reference and real transactions and reports errors if those

two do not match.

Over-the-bus port transactions allow engineers to perform block-level verification alternatively to

RAL (register transactions) or to complement RAL.

3. Direct port transactions (PORT trans A2 in Figure 5): They allow for stimulating or monitoring the

interface of the DUT directly from the UVC. This is a typical situation when the SoC contains various

sensors or receives digital or analog data from the outside world. In this case, the UVC replaces such

outside sources and provides data instead. In Figure 1, Block A UVC directly stimulates the port A2

of Block A. Again, the stimuli can be forwarded via the input monitor to the predictor.

Globally, the predictor of Block A UVC processes all stimulus types for Block A, either register stimuli or port(s)

stimuli. This makes it possible to build a detailed prediction of Block A behavior. The recommendation is to pay

attention to details while doing the block-level verification and limit the prediction when moving to the top-level.

Block B UVC in Figure 6 fulfills a very similar function as Block A UVC. The only difference is that transactions

on the port B2 are not directly driven but directly monitored. Therefore, only the output monitor is present for port

B2 in Block B UVC. Data from this monitor are sent to Scoreboard for comparison to reference data. An example

of such composition is that the DUT is producing data on its primary output ports, and these should be checked, for

example, when external devices are driven, or data to the outside world are transmitted.

Figure 6: Block B details.

6

A. UVM Event Pool

To complete the description of Figure 1, SoCs usually contain one or more CPUs, which communicate with

peripherals via the bus. When peripherals finish their operations, they notify the CPU using interrupts. Of course,

when an interrupt system is present in the DUT, interrupts must be processed and checked in verification. An IRQ

UVC is utilized in the presented test-bench; it collects all interrupts from various peripherals and triggers

corresponding UVM events. These events are stored and available for the whole UVM test-bench thanks to the

UVM event pool structure. Function create_uvm_event in Figure 7 registers newly created events to the global

pool, and function update_irq_event triggers an event when an associated interrupt occurs.

 /**
 * create_uvm_event - function for creating the event, protection in case of non-singleton UVM_EVENT

 * and non-singleton UVM_EVENTS cannot be created.
 * @param name - name of the event
 */
 function uvm_event interrupt_subscriber::create_uvm_event(string name);

 //Definition of the event, and getting the global event pool handler
 uvm_event new_event;
 uvm_event_pool global_pool = uvm_event_pool::get_global_pool();
 //In case the event doesn't exists, create one, otherwise get it from the database
 if(!$cast(new_event, global_pool.get(name))) begin
 new_event = new(name);
 global_pool.add(name, new_event);
 end
 else begin
 new_event = global_pool.get(name);
 end
 return new_event;

 endfunction : create_uvm_event

 /**
 * update_irq_event - function for updating actual events, depending on the polarity of the IRQ.
 * @param t - IRQ transaction
 * @param irq_event - UVM event associated with interrupt
 */

 function automatic void interrupt_subscriber::update_irq_event(irq_transaction t, uvm_event irq_event);
 if(t.irq_polarity) //If polarity is 1 then the IRQ was caught on posedge
 irq_event.trigger();
 else //If polarity is 0 then the IRQ was caught on negedge
 irq_event.reset();
 endfunction : update_irq_event

Figure 7: Creating and triggering UVM events for interrupts.

B. UVM Sequence Layering

 ALL2BUS / BUS2ALL layering was already mentioned in the paper, as well as the idea that block-level

verification from the top-level perspective is possible mainly because of the central bus use. It is essential to realize

that due to the layering, it is possible to verify blocks of the SoC one after another or in parallel without having all

the top-level modules assembled. Even the CPU is not needed now, although it will be the heart of the final SoC.

To give a specific example: it is possible to start verifying Block A even when Block B does not exist yet, or when

both exist at the same time, Block A can be verified by a different person than Block B, and every verification

engineer can use his/her style of programming. Of course, both must understand the principle of layering.

C. Configuration

Configuration is a vital part of the proposed test-bench. All the UVCs are configured to the active mode at the

beginning (while verifying blocks), as they are fully responsible for the verification process. Afterward, when

moving to the top-level verification, configuration is needed to accommodate the test-bench and to switch some

of the UVCs to the passive mode (CPU is taking a part of the stimulation to itself). As a reminder, an active agent

has the driving part (sequence → sequencer → driver) as well as the monitoring part active (monitor → analysis

components). A passive agent has only the monitoring part active. One UVC may contain more agents, but for

simplicity, the scheme of one agent per one UVC will be used when explaining the concept. Therefore, all the

UVCs can be marked as active or passive (see Figures).

Figure 8 provides an example of the test written for the architecture with Block A and Block B. Parts of the test

and the figure with the same color are bound together. To explain the test flow, please follow the code comments.

7

IV. TOP-LEVEL VERIFICATION WITHOUT FIRMWARE

 A strategy in top-level SoC verification can be moving incrementally from the simplest blocks toward the more

complex block groups. When the top-level is fully assembled, the strategy can be to verify without the CPU (the

verification is driven only from the UVCs), or to include the CPU into the verification process and thus end up with

HW-SW co-verification where firmware drivers are involved. Let us have a look at the top-level verification

without the CPU first.

 Figure 9 shows the same organization of an SoC as in the previous section, but both UVCs (Block A UVC, Block

B UVC) are active at the same time. The real SoCs are much more complex, but the principle remains the same.

When a new peripheral should be connected to the bus in the SoC, the steps are the same - an additional block is

connected to the DUT, an additional UVC is connected to the test-bench, new interrupt(s) are added, the UVC's

register model is included into the global register model, and a translation of new transactions is added to the

Figure 8: The test flow with the proposed test-bench.

8

layering. If the SoC contains more than one bus, the UVM environment is updated with another UVC and

transparent layering.

 While block-level verification focuses on individual blocks, top-level verification considers how these blocks

interact and collaborate. From this perspective, a suitable configuration can deactivate some parts of the UVCs. For

instance, deactivating detailed prediction for Block A, minimizing the printing of debugging information or

coverage measurement, or other measures to accelerate verification by optimizations.

 For a particular example, both Block A UVC and Block B UVC in Figure 9 are marked as active; they drive

writing to the registers of Block A and Block B in the DUT, they drive stimulus to their ports using transactions A1

and A2 for Block A and transactions B1 for Block B. It is reasonable because the UVCs are responsible for driving

the whole verification. They are, in fact, the masters of communication, as the CPU is disconnected now.

V. TOP-LEVEL VERIFICATION WITH FIRMWARE

 If one or more CPUs are present in the SoC (let us assume those are already verified in a separate test-bench or

delivered as an IP), integration with the HW must be verified, i.e. HW-SW co-verification. Firstly, the interaction

of the peripherals with the CPU must be checked, and secondly, it should be verified that the firmware drivers or

the product firmware are correct. This, however, requires some adaptation of the test-bench and the test cases.

 In this verification phase, the focus is on the interconnection of blocks and their communication, but this time

the CPU (or CPUs) is the master of communication. The CPU performs various operations, such as executing a

firmware program's instructions, accessing the peripherals' registers, activating their operations, sending data in,

and collecting responses and results of the operations based on triggered interrupts. The UVCs and the entire test-

bench must be adapted to this situation; the CPU and the UVCs cannot fight for mastership (their commands may

collide). The adaptation is done in two ways:

1. The running UVM test is synchronized with the executing firmware. When the firmware initiates

commands, the UVM test must wait, and vice versa. Without going into much detail, there are C

functions defined for the firmware, such as c2sv_wait_sync() or c2sv_provide_sync(), and very similar

SystemVerilog functions at the UVM side, sv2c_wait_for_sync() and sv2c_provide_sync(). These four

functions can establish a handshake between the test-bench and the executing firmware application.

Furthermore, debugging information can be printed, and an exchange of data is accomplished

using set_data() and get_data() functions.

2. Some UVCs are switched to the passive mode. In Figure 10, Block A UVC remains active because it

still sends A2 transactions to port A2 of Block A. However, stimulation using A1 transactions is

deactivated together with the writes to registers (only register monitoring remains enabled). The reason

is that these operations are now the full responsibility of the CPU - it writes to registers and drives port

Figure 9: Top-level control and data flow example when CPU is not used.

9

A1. Block B UVC is switched to the passive mode; it monitors the states of the registers and checks

data on the port B2. If needed, it is still possible to have prediction active in both UVCs, even if they

do not actively participate in the stimulation of the DUT. Input monitors inside the UVCs may catch

transactions initiated by the CPU and forward them to predictors (this is not illustrated in Figure 10).

Figure 10: Top-level control and data flow example when CPU is used.

VI. REUSE OPTIONS

The potential for reuse is extensive in this type of test-bench. Let us consider a situation when a new test-bench

is planned for an SoC containing previously verified blocks and some new ones. What possibilities exist for

reusing the old test-bench?

1. The same test-bench skeleton can be used. Based on the central bus (or buses), BUS UVC(s) and IRQ

UVC for processing interrupts are created/reused. If the central bus is different than

before, ALL2BUS/BUS2ALL layering must be updated, meaning that transactions coming from the

UVCs must be translated to the bus transaction and vice versa. The skeleton also contains an empty

global register model, where register models of new or reused UVCs must be included.

2. Already verified UVCs from older projects can be reused. It can happen, of course, that their

configuration must be adjusted or the functions updated somehow, for example, to extend the

supported functionality. If the verification engineers followed UVM and configuration principles

from the start, this should be possible, including RAL.

3. If firmware drivers are updated, the test-bench side changes comprise updating the tests. Regardless,

the new project usually requires significant updates of tests or at least comprehensive revision. Plus,

new test cases are added to the test set.

VII. CONCLUSION

To summarize, the paper's main contribution is the UVM test-bench skeleton, which can be used and reused to

verify SoCs. Thanks to the skeleton, it is possible to develop one test-bench and use it for block-level verification,

top-level verification without a CPU, and HW/SW co-verification with a CPU. Furthermore, this test-bench allows

parallel development of UVCs (verification engineers may work on different parts of the test-bench simultaneously

and even at different levels) and a good level of freedom in UVCs implementation.

REFERENCES

[1] Wilson Research Group and Siemens 2022, “The 2022 Wilson Research Group Functional Verification Study, Part 6”,

https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/

[2] Siemens, Layering in UVM, http://verificationhorizons.verificationacademy.com/volume-7_issue-3/articles/stream/layering-in-

uvm_vh-v7-i3.pdf, 2022.

[3] DVTalk 2021, How to use uvm_event and uvm_event_pool, https://dvtalk.me/2021/09/20/uvm-event/, 2021.

[4] VerificationGuide.com, UVM event pool example, https://verificationguide.com/uvm/uvm-event-pool/, 2022.

https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/
http://verificationhorizons.verificationacademy.com/volume-7/_issue-3/articles/stream/layering-in-uvm/_vh-v7-i3.pdf
http://verificationhorizons.verificationacademy.com/volume-7/_issue-3/articles/stream/layering-in-uvm/_vh-v7-i3.pdf
https://dvtalk.me/2021/09/20/uvm-event/
https://verificationguide.com/uvm/uvm-event-pool/

