

1

Hybrid Emulation for faster Android Home screen

bring up and Software Development

Rinkesh Yadav, Manoj Khandelwal, Sarang Kalbande, Garima Srivastava

Samsung Semiconductor India Research Bangalore

(rinkesh.y@samsung.com, manoj.k@samsung.com, sarang.mk@samsung.com,

s.garima@samsung.com)

Hyundon Kim

Samsung Electronics, 1-1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, Korea

hyundon.kim@samsung.com

Abstract— SoC Software bring-up and its validation are usually done at post-silicon stage, which can affect time to

market a product, and cost of silicon re-spin. It is also difficult to debug hardware/software design bugs at post-silicon

level because of less RTL design visibility. So early software bring-up and validation is very crucial. Therefore, Platform

Teams need a high-speed model of the SoC months ahead of silicon availability to begin Software bring-up and

application driver development. Because of Less Emulator driverClk frequency software bring-up cannot be done in

FPGA based Emulation Verification environment. Therefore, Platform Teams need a high-speed model of the SoC,

months ahead of silicon availability to begin Software bring-up and application driver development. To overcome less

emulator speed and to accelerate Software development, Hybrid Emulation is developed. Hybrid emulation combines

virtual prototyping and hardware emulation. To speed up the hybrid emulation, some components of SoC move from

emulator to virtual side. So in hybrid Emulation, one part of SoC design runs at emulator and other part of design run

in virtual platform. Virtual prototypes are high performance, System C models of a particular IP, block or an entire

SoC. These are modelling the behavior and inter-block communication at transaction level (TLM), which makes these

faster than equivalent cycle-accurate RTL.

Keywords—FPGA; Pure Emulation; Hybrid Emulation; Virtual Platform; System C Model; Software development;

I. INTRODUCTION

In today’s competitive era, time-to-market a product is very important. SoCs are becoming increasingly

complex, so early Software development and Verification is very crucial. Design teams cannot afford mistakes

when making critical architecture decisions affecting performance or other requirements early in the development

processes. SoC Software bring-up and its validation are usually done at post-silicon stage which can affect time to

market a product and cost of silicon re-spin. It is also difficult to debug hardware/software design bugs at post-

silicon level because of less RTL design visibility. Therefore, Software teams need a high-speed model of the SoC

months ahead of silicon availability to begin application development. So it is viable to develop these Software

much early at pre-silicon.

With the increasing complexity of SoC, the validation phase now has even more importance during the

development. The risk of shipping buggy SoCs must be minimized through careful analysis and the use of different

verification and validation processes, starting from the very beginning of the project and continuing through each

design phase until the end of the life cycle of the chip.

The design of the SoC is usually just a small part of the job compared to the entire effort necessary to develop

a new product. The majority of the costs are in the verification of the product and developing the software to run

on it.

The following chart shows an analysis of the costs involved in various SoC Validation platform with respect to

increase of design complexity:

mailto:rinkesh.y@samsung.com
mailto:manoj.k@samsung.com
mailto:sarang.mk@samsung.com
mailto:s.garima@samsung.com
mailto:hyundon.kim@samsung.com

2

The chart shows that the growth of the costs associated with validation and software have been growing

exponentially when compared with the process technology scale; this is the reason why they both see a dramatic

rise in importance, not only at the end of the design phase but from the beginning of the project, where hardware

design, verification and software are performed simultaneously.

II. HIGH PERFORMANCE EMULATION METHODOLOGY: NEED & IMPACT

There are mainly four methods to test a design before the tape-out of chip; each of them has different advantages

and disadvantages thus all four are used during the development of a SoC.

i. Simulator

Simulation is used from the very beginning of the design because it gives a complete view of the signals

in the RTL and it is often used to verify functionality at the module level. When the structure of the chip

is close to being completed, the limits of this method start to rise quickly the huge computational power

required for the simulation limits the speed of the execution to 100Hz for the latest cores, requiring too

much time to execute a boot of an operating system for example.

ii. Emulation

The performance problem could be partially solved by using an emulator, which, with specialized

hardware, can reach a speed of ~5MHz (ZeBu Server 5), still keeping the same complete view of the

internal status of the system. The main disadvantages of emulators are the cost of ownership, which is an

order of magnitude bigger than the other methods, and again the time required to boot an actual operating

system is not suitable for software developers who needs to the system reboot few times during the day

when developing kernel and device drivers.

iii. FPGA

Software development and validation could be done at FPGA prototyping boards but because of high cost

and less debug visibility, it is also not preferable for it.

Figure 1. SoC development stages and their cost comparison based on scaling transistor size

Table 1. Comparison of different Verification platform with respect to various aspects

3

iv. Silicon

Usually Software development and validation happen at post silicon stage. As increasing the SoC

complexity and short schedule time, software development is also becoming time consuming and it is very

challenging to complete it on time. Also less RTL debug visibility of silicon it is very difficult to debug

and identify type of bugs either they are hardware bug or software bug. So to avoid time risk and silicon

re-spin cost it is better to start software development and validation on pre-silicon stage. Therefore, we

can avoid this risk.

A. Challenges to bring-up software in Pure Emulation.

Software development can be done using pure emulation but achieved emulator driver clock frequency is too less

to bring-up Linux kernel, Android OS and to develop system level drivers for various complex IPs. It takes around

4 days’ time to bring up complete android home screen on emulator where design is running at 1 MHz driver clock.

So performing software development iterations on pure emulation is no more realistic.

To overcome less emulator speed and to accelerate software development, Hybrid emulation is developed. As

Figure 3 shows hybrid emulation sits in between FPGA and Silicon with respect of debug to visibility and

performance. So hybrid emulation has better performance to emulation and FPGA. It also helps easier platform

upgradability and debug software bring-up due to better RTL design debug visibility compared to post-silicon.

Furthermore, because of the full design visibility of hybrid emulation, it significantly helps users to debug any

hardware/software issues and verify corresponding fixes against the accurate virtual model with a quick turnaround

time. Hybrid emulation supports all emulator debug features along with software debugger like waveform dump,

Trace32, TLM debugger, Transactor and Adaptor debugger through log levels.

Figure 2. Full Android 13 boot time on Emulator

Figure 3. Hybrid Emulation Debug visibility VS Performance

4

III. HYBRID EMULATION: INTRODUCTION

Hybrid emulation combines virtual prototyping and hardware emulation. Hybrid emulation is done when part

of the design runs on the emulator and the other part runs in virtual prototype.

Hybrid platform has two domains:

Virtual Platform Side (TLM, VDK) : CPU, GIC, MCT ,UART, PERI, Storages, DRAM

 Emulation Side (RTL) : Bus, Memory Controller, M/M IPs and others.

A. The Virtual Prototype component

Virtual prototypes are high performance, SystemC models of an entire SoC, a particular block or a system

model. They have primarily been used by project architects to estimate SoC power, performance and for early

software development.

Architects will use them for architectural design optimization and to check that their designs meet certain goals,

such as performance and/or power. Architects may also use virtual prototypes to assess the correctness of the bus

architecture.

B. The Hardware Emulation component:

An emulator runs much faster than a software-based RTL simulator and has a simulation-like use model. All

the debug features available in simulation are present in emulation. The user can add dump bars, assertions,

monitors and more.

Emulators make it possible to bring up a full SoC design before even an FPGA-based prototype is available.

The design team can then begin hardware-software integration. The RTL probably is not stable at this stage, and

this is why the full debug capability of the hardware emulator is so important.

IV. DEVELOPMENT OF HYBRID PLATFORM

Hybrid emulation enables SoC development teams to take full advantage of their investments in a high-performance

emulator across their entire project to meet increasing software, verification and competitive challenges. Typically,

a model of the processor is run in the virtual platform and then the rest of the RTL design runs on the emulator.

The task of a virtual platform is to have just enough accuracy to support the level of software being run on it. This

is achieved by modelling the behavior and inter-block communications at transaction level, which makes these

faster than equivalent cycle-accurate hardware. If user has the necessary models or libraries of models usually

written in SystemC, then user can create a virtual platform for any SoC. Such libraries of SystemC models are

available as open source or commercial packages such as the system-level library.

Usually ARM IP dominates SoC designs, so you will need models of ARM cores and bus sub-systems. ARM

supplies such models by the name of Fast Models, and these models are already in wide use in virtual platforms.

A. Partitioning an SoC across virtual and hardware platforms

Figure 4. Hybrid Emulation

5

In Hybrid emulation, there will be some blocks of the SoC design running in FPGA hardware and the rest in virtual

models. In some cases, the choice will be governed by the availability of models or RTL. If you have both, however,

then it will depend on the side of the virtual-hardware boundary where that particular block is placed. This leads to

the critical question of where to place the boundary between virtual and physical domains.

In pure emulation model, there are many transactions between CPU and DRAM. This is bottleneck for

Android/Linux booting and Software development. To overcome this, CPU and related components are moved to

virtual side (S/W side) for OS boot and run acceleration in hybrid platform. This acceleration is achieved in Hybrid

because of virtual model of the CPU runs Instruction Set Simulation (ISS) to perform much faster compared to

CPU’s gate-level behavior in emulator. Hybrid emulation has Fastmem model of DRAM instead of RTL memory

model. Hybrid fast memory is shared memory between virtualizer and emulator, which is properly sync between

them.

B. Hybrid Platform Architecture

Figure 6 shows Hybrid Platform architecture on ZeBu 5 Server. To connect virtual component to hardware on

emulator various Adaptors and Transactor are getting used. Adaptors are integrated at Virtualizer studio and these

are used to connect virtual component to hardware through different Transactor implemented in Emulation

testbench. ZHAL is Zebu hybrid adaptors library which provide wrapper of all require adaptors. These wrappers

can be used inside virtualizer as an TLM model.

Figure 5. Partitioning an SoC across virtual and hardware platforms

6

As discussed above, while booting Linux kernel most of the transaction happens between CPU and DRAM. To

reduce CPU to DRAM memory access latency, shared dram memory is developed in hybrid platform. In shared

memory, we have dram ZRM memory on emulator and shadow memory at Virtual Side, which are properly synced

through Transactor to minimize software virtual and emulator transaction.

C. Debugging Methods

In any validation platform, supported debugging methods are very important. Hybrid Emulation supports various

software and hardware debugging methods to debug any encountered bugs while developing software.

Below are few debugging way which hybrid emulation supports:

i. TLM transaction debug through Chart View

ii. SW debugger through VP disassembly feature and t32 debugger

iii. Transactor and Adaptor debug through different log levels support

iv. Hardware debug through waveform dump in Verdi

First Two debugging methods usually used to debug Software bugs by putting breakpoints, bypass the function,

forcing the register and dumping the memory through T32 debugger. Third debugging method is used to debug

transaction between software and hardware through various Adaptors supported log levels. Fourth method is used

to debug RTL functional behavior through waveform dump in Verdi.

Figure 6. Hybrid Platform Architecture

Figure 7. Shared dram memory model in hybrid Emulation

7

D. Challenges and Limitations

One challenge with the hybrid emulation approach is that it can generate insane amounts of data very fast. As a

result, there is often a window of a million or so cycles that are recorded and can be used when a bug is encountered

to investigate the root cause. However, running software and emulation and doing a system boot or bringing up a

software may take billions of instructions. The point at which the bug was injected by an unexpected behavior and

the point at which it is first observed may be too far apart for the million-cycle window to be useful. Therefore, it

is little bit difficult to debug Software bugs in System C models. While in Pure Zebu, Software debugging is easy

because whole SoC runs on hardware.

Hybrid Emulation has some limitations. As in hybrid emulation, we use System C and TLM model of some SoC

components, which does not support Cache coherency. So while software development through hybrid emulation

we need to disable cache coherency. One more limitation ARM Fast models has, it does not support multi-core

simulation so we also need to disable SMP while developing Linux Kernel and Android home screen.

V. RESULTS AND BENEFITS: PURE EMULATION V/S HYBRID EMULATION

Software brought-up times shows in Table 2 taken from our Complex Exynos SoC, which has almost 2 billion gate

count.

As Table 2 shows, In Simulation, software development is unrealistic because of less run time performance. In

Emulation platform takes almost 4 days to bring-up full Android home screen. Therefore, Pure emulation platform

is also not preferable to bring-up software where we need to run many iterations while developing software and

drivers.

Hybrid Emulation takes almost 2 Minutes to boot Linux kernel, 12 Minutes to get Android Logo and total 72

Minutes to brought-up Android Home Screen on display panel.

Table 2. Software bring-up time comparison in Various Platforms

Figure 7. Snapshot of Android Logo and Home Screen on display panel

8

VI. FUTURE SCOPE:

A. Enabling CPU Benchmarks:

In Hybrid Emulation, to Enhance performance we black box real RTL CPU from emulator and integrate ARM

released System C fast model of corresponding CPU at virtual side. So it is not possible to perform any CPU

benchmark in hybrid emulation.

So we are trying to enable, perform CPU benchmarks in hybrid emulation through Gear shift methodology. In

this methodology, once Linux/Android is brought-up with virtual side System C CPU model then left shift all

CPU STATES from virtual CPU to RTL CPU. As Linux/Android is already booted up, CPU Benchmark can

be run with Real RTL cpu on emulator.

B. Multicore support enablement in Hybrid Emulation:

As we mentioned section iv(d), In hybrid emulation challenges multicore Linux boot (SMP) and Cache

Coherency does not support. Therefore, we are trying to find alternate way to support SMP in hybrid

emulation.

C. Multichip support enablement in Hybrid emulation:

As SoCs are becoming more complex so it is hard to fabricate them in single chip, so Semiconductor industries

are exploring another solution and they are moving to multi-die and multi-chip based chips. Therefore, we are

also working on to enabling hybrid emulation to support our multi-chip base SoCs.

ACKNOWLEDGMENT

We would like to express my gratitude to Mr. HwanSung Park(Samsung Semiconductor Korea) and Synopsys

Korea Support Team specially Mr. Tae-Hyung Kim, Mr. Jay Seo and DongSu Park for their guidance and support.

REFERENCES

[1] Issac P Zacharia and Jitendra Aggarwal “Hybrid Emulation: Accelerating Software driven verification and debug” Presented at DVCON

India 2021 conference.

[2] Article “How FPGA boards help to validate ARM processors” (https://community.arm.com/arm-community-blogs/b/tools-software-

ides-blog/posts/how-fpga-boards-help-to-validate-arm-processors) [Page 1-3]

[3] Synopsys Hybrid Emulation Documents and Quick Start User Guide.

Figure 7. Gear shift methodology in hybrid emulation to perform CPU benchmark

https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/how-fpga-boards-help-to-validate-arm-processors
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/how-fpga-boards-help-to-validate-arm-processors
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/how-fpga-boards-help-to-validate-arm-processors

