

1

A scalableVIP component to increase robstuness

of co-verification within an ASIC
Scalable and automated gray-box method

Mario de Matteis, ON Semiconductor, ASG/MCC, Milan, Italy (mario.dematteis@onsemi.com)

Matteo Barbati, ON Semiconductor, ASG/MCC, Milan, Italy (matteo.barbati@onsemi.com)

Abstract—In ASIC development the firmware might be verified by a standalone step on a FPGA emulator without

other direct co-verification methods to signoff the complete DUT application. This strategy is commonly accepted for

analog-on-top ICs, but it might hide bugs or weaknesses of the device since it doesn’t really stimulate and monitor the

DUT with the firmware executing. A full-chip co-verification approach should be used: a testbench where the full-chip

DUT (digital and analog logic plus firmware) is instantiated and a fully-featured UVM environment is used to qualify

the entire device. Several co-verification techniques are available that vary from firmware-centric co-verification

approaches to hardware-centric co-verification strategies. In this paper we propose a method based on a scalable VIP

that monitors the interactions between firmware and other parts of the design. The component (a.k.a FW_VIP)

provides a bridge that supports complex HW/FW interactions, like checking HW/FW overall behavior and

synchronizing scoreboards with firmware by capturing specific events with minimal impact on the classic firmware

and hardware workflows.

Keywords—HW/FW co-verification, SystemVerilog, UVM, VIP, firmware, coverage, ASIC, power, SoC.

I. INTRODUCTION

 The increasing complexity of power ASIC products, such as multi-phase controller, is pushing platforms to

include SoC-like architectures which includes microcontrollers, complex protocol interfaces and security features.

The microcontroller is typically used to implement features that requiring more flexibility than RTL code. Hardware

designers are required to develop a design that provides the minimum set of capabilities that can be use by firmware

to address the required functionalities.

 In this kind of context, the target of the verification requires that also the firmware is properly verified. The lack

of firmware verification may hide possible mis-behaviors, weakness and/or bugs.

 In theory HW/FW co-verification is the right strategy to follow in these cases, but HW/FW co-verification

requires that both the verification and firmware teams work heavily together for several reasons. The verification

engineers need support from firmware engineers to have reliable code to use in their simulations, and the firmware

engineers need help from verification engineers to be able to properly use complex verification environment.

 The state of the art is that usually the firmware engineers test their own code on FPGA emulator [2]. This is

fine, but for the target of the co-verification is not enough since the DUT’s behavior is checked in few cases without

the possibility to fully understand what is happening inside the device, but only at the external interfaces. For this

reason, this strategy works fine for firmware engineers and provides a way to perform some performance analysis

but from a verification point of view is not reliable to validate a design.

 On the other hand, another approach, proposed in [1] is to create a “fake” register map that allows mapping of

verification components functionalities (also with randomization) in firmware world and to develop verification

tests in firmware. This approach works to reduce the gap between the firmware and verification worlds but requires

verification engineers to convert their approach from usually System-Verilog UVM [3] to firmware languages.

This means verification engineers need to become experts of some aspects related to firmware development (scatter

files, compilator options and so on).

 Other strategies are available to address proper HW/FW co-verification but are too invasive in terms of changes

to the usual design workflow. In [4] a SW-centric Design approach is described where the entire development flow

2

is driven by SW development. In this case, software is used not only to provide Design features but also to perform

system architecture analysis that is refined in the following steps to obtain the desired device, with a verification

step that is based on the comparison between the implemented Device and the SW-model used in the architecture

analysis definition. In [5] a UVM-centric approach is described where an extension to UVM library based on D-

language is used in order to emulate FW through an Instruction Set Simulator.

In order to close the gap between verification and firmware worlds we propose a new strategy that minimizes

the changes to the firmware and verification workflows. The idea is to create a way to simplify the interactions

between the two teams, having the target firmware code with few modifications inside a classic UVM environment,

in order to address the limit of the state-of-the-art co-verification approaches outlined previously.

Figure 1 describes on the left the typical development workflows for both firmware and verification teams, while

on the right it describes the proposed workflows. The main differences are related to the need for “exit labels”

inside significant firmware functions that need to be linked to specific verification environment capabilities and to

a dedicated Verification IP (FW_VIP) required to manage automatically generated inputs from the firmware, to

synchronize and check the code with the verification environment.

Figure 1 - Workflow changes

 The benefit of this proposal is that neither verification engineers nor firmware engineers need to

significantly change their usual workflow to reach the target of correct HW/FW co-verification. Additionally,

extensive firmware verification is performed during regression runs. From a verification point of view, only two

steps need to be addressed to have the flow up and running:

1. Firmware verification IP development, required to manage the synchronization and checking capabilities

(functions and tasks triggers, variable monitoring, stack point checks etc.) required by co-verification.

2. Firmware verification IP automation flow, required to process the information needed by the FW_VIP

from firmware code.

Design
FW

devel
Verif
env

Comp
+ link

Regr.
flow

Design
FW

devel

Verif
env

FW
Vip

Add
labels

Comp
+ link

Regr.
flow

Auto

flow

TRADITIONAL APPROACH NOVEL APPROACH

3

Once the flow described above is in place the FW_VIP facilitates the interaction between firmware and

verification environment since it automatically translates the firmware events into UVM transactions which will be

passed to scoreboards and checkers. Figure 2 is depicting some types of events which can be monitored:

At the end the quality of coverage of the entire system is improved since also the firmware and its interaction

with hardware is monitored and checked by a fully-featured UVM environment and with little changes to normal

development flow. The level of results cannot be matched either in an environment with separated verification step

for firmware and hardware or in UVM environment with only hardware VIP instantiated where there is no access

to the internal firmware events.

II. FIRMWARE VERIFICATION IP

Figure 3 - FW_VIP block description

The Verification IP provides a mechanism to monitor specific events at the DUT memories and Program

Counters and to trigger the other components of the verification environment that are able to update their behavior

or to perform the proper check accordingly.

FW_VIP

DUT

CPU

MEM

MONITOR

COMPONENT

CONFIG

LINK

FILE
CONFIG

MEMBUS VIP

PC if

 FW_PKT

FW_VIP

FUNCTION

CALLS

VARIABLE

WRITING

STACK

MANIPULATION

LINE OF CODE

EXECUTION

Triggers UVM

SCOREBOARDS

AND

CHECKERS

Figure 2 - FW-VIP Monitored events

4

The topology is depicted in Figure 3. A MEMBUS VIP monitors the memory transactions at the DUT memory

interface and sends transaction to a MONITOR that represent the core of the FW_VIP. In the same way, one (or

more in case of multicore) Program Counter interface is used to monitor the Program Counter of the

microcontroller. This interface is connected to the MONITOR too. The Monitor collects the information received

by MEMBUS VIP and PC Interface in dedicated transactions that are sent to the components (scoreboards,

predictors and monitors) connected to the FW_VIP. The MEMBUS VIP can be customized, according to the needs,

to manage the proper DUT memory interface (i.e. AHB VIP).

A. Firmware VIP Packet

Two kinds of information are usually required to be able to perform HW/FW co-verification:

• Hardware and firmware synchronization events.

• Firmware variable update events.

The first one, based on the Program Counter value, is used typically to notify the verification environment that

an event of interest has occurred in the firmware, for example that a specific function was called or that the interrupt

routine associated to a specific interrupt has started.

The second kind of events are related to the monitoring of specific firmware variables that have some effect on

the verification environment behavior or checks. For example, knowing the value of a specific variable allows

checking the contents of the payload of a specific DUT internal protocol or verifying that the device behavior is in

line with the configuration done in firmware.

For these reasons, the interactions between the Verification IP and the other part of the verification environment

are managed through the packet of Figure 4.

typedef enum {pc,dut_state,variable} event_type;

class fw_packet extends uvm_sequence_item;

 event_type currentEvent;

 string pc_event;

 string variableName;

 bit [31:0] variableValue;

 `uvm_object_utils_begin(fw_packet)

 `uvm_field_enum(event_type, currentEvent, UVM_ALL_ON)

 `uvm_field_string(pc_event, UVM_ALL_ON)

 `uvm_field_string(variableName, UVM_ALL_ON)

 `uvm_field_int(variableValue, UVM_ALL_ON)

 `uvm_object_utils_end

 function new(string name = "fw_packet");

 super.new(name);

 endfunction

 endclass : fw_packet

Figure 4 – fw_packet class

5

The FW_VIP packet (a.k.a. fw_packet) contains infomation regarding:

• The source of the information identified by the enumerated type variable currentEvent notifying if the

updated information is coming due to a Program Counter event or due to a Variable Update event.

• The Program Counter event name: in case a Program Counter event happens, this variable stores the

name of the raised event.

• The variable name: In case of a variable update event, this variable stores the name of the updated

firmware variable.

• The variable value: In case of a variable update event, this variable stores the value of the updated

firmware variable.

B. FW_VIP Monitor

The core of the FW_VIP is represented by the MONITOR. This component will operate as a bridge between

the MEMBUS VIP, the Program Counter interface and the other parts of the verification environment. Only a small

subset of memory addresses and Program Counter values need to be managed for the purpose of HW/SW co-

verification. For this reason, as reported in Figure 5, two associative arrays, ramAddressList and pcValueList are

used to store lists of Addresses and PC values:

- ramAddressList defines the keys (integer) representing the memory addresses of the variables (string)

to monitor

- pcValueList defines the keys (integer) representing the PC values associated with specific function

name (string)

 class fw_monitor extends uvm_monitor;

 fw_packet pc_pkt;

 fw_packet ram_pkt;

 ahb3_master_packet ahb_pkt;

 virtual interface pc_if vif;

 int pcLogFileIndex;

 string ramAddressList[integer];

 string pcValueList[integer];

 string ramAddressFilePath;

 string pcValueFilePath;

 bit[31:0] valueMask= 32'hffffffff;

 uvm_analysis_imp #(ahb3_master_packet, fw_monitor) ahb_pkt_port;

 uvm_analysis_port #(fw_packet) send_pkt;

 `uvm_component_utils_begin(fw_monitor)

 `uvm_field_object(pc_pkt, UVM_ALL_ON)

 `uvm_field_object(ahb_pkt, UVM_ALL_ON)

 `uvm_field_string(ramAddressFilePath,UVM_ALL_ON)

6

 `uvm_field_string(pcValueFilePath,UVM_ALL_ON)

 `uvm_field_int(valueMask,UVM_ALL_ON)

 `uvm_component_utils_end

 …

Figure 5 – MONITOR class

 These data structures are populated at the beginning of simulation starting from two external files identified

through monitor variables ramAddressFilePath and pcValueFilePath. The content of these file is defined by the

verification and firmware engineers together to ensure correct monitoring of the more interesting PC events and

firmware variables and are automatically populated through a set of scripts operating on firmware elf file and

symbol file.

Figure 6 and Figure 7 provide an example of these two files. In the first case a list of variables is reported with

the associated memory address. In the second case, the name of relevant functions and exit labels are reported with

the associated Program Counter value.

 vout_max_ra 2000054E

 vout_min_ra 20000550

 vout_transition_rate_ra 20000556

 vout_max_rb 200005A2

 vout_min_rb 200005A4

 vout_transition_rate_rb 200005AA

Figure 6 – ramAddressList configuration file

 load_configuration_end DEFAULT 00003f78

 load_configuration HIDDEN 00003f09

 load_user_configuration_from_OTP_end DEFAULT 00002ef6

 load_user_configuration_from_OTP HIDDEN 00002ec5

Figure 7 – pcValueList configuration file

Snippets of code in Figure 8 and Figure 9 show how the memory accesses and Program Counter updates are

managed by the monitor. The strategy is the same for both. Once new data is available, the monitor verifies if the

information should generate an event. If true, the monitor updates the relevant information of the FW_VIP

transaction and writes to the analysis port.

 function void write(ahb3_master_packet p);

 $cast(ahb_pkt, p.clone);

 `uvm_info("fw_monitor", $sformatf("AHB packet triggered \n %s",p.sprint()),UVM_FULL)

 if (ahb_pkt.hwrite == AHB3_WRITE) begin

 `uvm_info("fw_monitor", $sformatf("AHB write packet triggered \n

 %s",p.sprint()),UVM_FULL)

 if (ramAddressList.exists(ahb_pkt.haddr)) begin

 ram_pkt.pc_event = "NULL";

 ram_pkt.variableName = ramAddressList[ahb_pkt.haddr];

7

 if ((ram_pkt.variableName == "vrStateA") ||

 (ram_pkt.variableName == "vrStateB")) begin

 $cast(ram_pkt.dutStateValue,ahb_pkt.hwdata[7:0]);

 ram_pkt.currentEvent = dut_state;

 end else begin

 ram_pkt.variableValue = ahb_pkt.hwdata;

 ram_pkt.currentEvent = variable;

 end

 `uvm_info("fw_monitor", $sformatf("AHB address %8X is in the list \n

 %s",ahb_pkt.haddr,ram_pkt.sprint()),UVM_FULL)

 `uvm_info("fw_monitor", $sformatf("RAM event\n

 %s",ram_pkt.variableName),UVM_NONE)

 send_pkt.write(ram_pkt);

 end

 end

 endfunction: write

Figure 8 – Monitoring ramAddressList

 virtual task run_phase(uvm_phase phase);

 forever begin

 @(posedge vif.clk);

 `uvm_info("fw_monitor", $sformatf("program counter triggered: %4X",

 vif.program_counter),UVM_FULL)

 if (pcValueList.exists(vif.program_counter)) begin

 pc_pkt.pc_event = pcValueList[vif.program_counter];

 pc_pkt.variableName = "NULL";

 pc_pkt.currentEvent = pc;

 `uvm_info("fw_monitor", $sformatf("PC %8X is in the list \n

 %s",vif.program_counter,pc_pkt.sprint()),UVM_FULL)

 `uvm_info("fw_monitor", $sformatf("PC event\n

 %s",pc_pkt.pc_event),UVM_NONE)

 send_pkt.write(pc_pkt);

 end

 end

 endtask: run_phase

Figure 9 – Monitoring pcValueList

8

III. FIRMWARE VIP AUTOMATION FLOW

Figure 10 – Automation process

As described in the previous section, the configuration of the FW_VIP monitor is performed using two external

files, one for the firmware variable addresses and another one for the possible PC values. These files are strictly

related to the current version of the firmware used in the verification flow.

Automatic generation of these files is required to reduce the risk of introducing errors into the FW_VIP input.

For this reason, a set of scripts is required. In our proposal, we suggest the usage of dedicated scripts that are derived

from the symbol file and/or ELF file related to the current version of the firmware and are updated as required upon

code changes. These scripts also need some configuration inputs that identify the name of the variables or functions

that are required to correctly manage the HW/FW co-verification flow. The list of variables and functions to monitor

is defined by both verification and firmware Teams.

IV. CASE STUDY

The proposed approach is currently used in the verification flow of our multi-phase controller. It is used in the

following context:

• To trigger self-checking capabilities inside the scoreboards

• To check the correctness of the firmware code

The firmware MEMBUS VIP in the case study is an AHB VIP and the microcontroller is a single-core Cortex

M0. The program counter of our micro-controller is connected to the PC SystemVerilog interface of the FW_VIP.

A. Self-Checking Capabilities Trigger

In this context, the FW_VIP sends to the scoreboard a transaction with a Program Counter event. The scoreboard

checks that the trigger event is one of the events that has some meaning for it and then updates its behavior to verify

the firmware is working well.

In the case study this functionality is used to notify the scoreboard to the completion of a set of copy commands

from different DUT locations performed by firmware.

function void write_pc_pkt(fw_packet p);

 uvm_event start_copy;

 uvm_event copy_finished;

 fw_packet pkt;

 $cast(pkt, p.clone());

 case(pkt.currentEvent)

 pc: begin

 int res [$];

 res = pc_start_labels.find_index(x) with (x == p.pc_event);

 if(res.size() == 1) begin

 copy_t = labels_map[p.pc_event];

 start_copy = ep.get("start_copy");

SYMBOL FILE

FROM COMPILER

/ ELF FILE

PC VALUE LIST CONFIG FILE

RAM ADDRESS LIST CONFIG

FILE

SCRIPTS

9

 start_copy.trigger();

 end

 res = pc_end_labels.find_index(x) with (x == p.pc_event);

 if(res.size() == 1) begin

 copy_finished = ep.get("copy_finished");

 copy_finished.trigger();

 end

 end

 dut_state: begin end

 variable: begin end

 endcase

endfunction: write_pc_pkt

virtual task copy_fsm();

 uvm_event start_copy;

 uvm_event copy_finished;

 start_copy = ep.get("start_copy");

 copy_finished = ep.get("copy_finished");

 forever begin

 case(state)

 'd0: begin

 int res [$];

 start_copy.wait_trigger();

 // Initialize here the addr_list data structures as needed

 if(copy_list.size() > 0) begin

 init_data_structures();

 // Check that the copy function is one of the expected

 res = copy_list.find_index(x) with (x == copy_t);

 if(res.size()!=1)

 `uvm_error(get_full_name(), "Unexpected copy

 function")

 else

 copy_list.delete(res[0]);

 end

 end

 'd1: begin

 copy_finished.wait_trigger();

 // Checks the copied data

 check_copy();

 state = 'd0;

 end

10

 endcase

 end

endtask: copy_fsm

Figure 11 – Scoreboard example

Figure 11 shows an example of scoreboard waiting on Program Counter events. FW_VIP notifies the

scoreboard to the start of the copy function from location A to location B. The scoreboard prepares the internal

data structures used to perform the check and starts to monitor what happens at the two DUT locations. Once the

FW_VIP notifies the scoreboard about the completion of the copy function, the scoreboard verifies all the copies

were correctly done and if all the required copies were performed by FW.

B. FW_VIP checker

Another usage of the FW_VIP is depicted in Figure 12. In this case our scoreboard is waiting for specific

transaction notifying that a specific firmware variable was updated. According to this kind of information the

scoreboard is able to check that the received value is as expected.

function void write_fw_pkt(fw_packet fw_pkt);

 fw_packet pkt;

$cast(pkt, fw_pkt.clone());

case(pkt.currentEvent)

 pc: begin

 end

 dut_state: begin

 end

 variable: begin

 if(fw_ready) begin

 case(pkt.variableName)

 "vout_min_ra" : begin

 void'(CHECK_vout_min_var(pkt.variableValue,0));

 end

 "vout_min_rb" : begin

 void'(CHECK_vout_min_var(pkt.variableValue,1));

 end

 "vout_max_ra" : begin

 void'(CHECK_vout_max_var(pkt.variableValue,0));

 end

 "vout_max_rb" : begin

 void'(CHECK_vout_max_var(pkt.variableValue,1));

 end

 "vout_transition_rate_ra" : begin

 void'(CHECK_vout_transition_rate_var(pkt.variableValue,0));

 end

 "vout_transition_rate_rb" : begin

11

 void'(CHECK_vout_transition_rate_var(pkt.variableValue,1));

 end

 endcase

 end

 end

endcase

endfunction : write_fw_pkt

Figure 12 – Scoreboard example

V. CONCLUSIONS

HW/FW co-verification is becoming more and more important to guarantee the overall quality of a mixed-

signal IC. The usage of microcontrollers to implement part of the device capabilities requires an efficient way to

perform HW/FW co-verification in the early stage of the project. On the other end, the co-verification requires high

interactions between FW and Verification Teams.

In order to mitigate the impact on the two flows, we propose an approach that reduces the number of interactions

between the two teams, minimizing changes in their usual workflow. This approach is currently used in our designs

and simplifies the interaction between the two teams, increasing the overall quality of the devices in term of verified

capabilities and coverage. Table 1 summarizes the main pros and cons related to the state-of-the-art approaches and

the proposed one.

 Pros Cons

FW-Centric (FPGA) approach Can be used for Performance Analysis/Stress

testing on FPGA/HW-emulator

Limited debug capabilities

Limited code coverage

No self-checking capabilities from UVM

world

Few capabilities of analog emulation

UVM-Centric (VAL) approach Full self-checking capabilities from UVM

world

Easy to debug

High Code Coverage

Scenarios written in FW language

Verification eng. must manage aspects

related to FW development (scatter file,

compiler option etc.)

Can’t be used for Performance

Analysis/Stress test on FPGA/HW-emulator

Novel Approach Full self-checking capabilities from UVM

world

Easy to debug

High Coverage

Limited changes to usual FW and Verification

workflows

Can’t be used for Performance

Analysis/Stress test on FPGA/HW-emulator

Table 1 - Co-verification approaches comparison

12

The verification team is able to verify not only the RTL code but also the entire system represented by digital

and analog as well as the firmware code. The firmware team can benefit of this task, focusing on firmware

development only and obtaining detailed feedback on the interaction between firmware and hardware.

Furthermore, the approach outlined in this paper is scalable and portable to different platforms with a very small

engineering cost. We plan to add new capabilities to the FW-VIP in order to increase the features available for the

FW team. In particular, we are already targeting the possibility to keep track of the firmware coverage through the

proposed approach.

REFERENCES

[1] A. Allara, F. Brognara: STMicroelectronics. “Bringing Constrained Random into SoC SW-driven Verification”, paper presented at

DVCon2013, San Jose February 25-28

[2] Y.B. Liao, P. Li, A.W. Ruan, Y.W. Wang, W.C. Li. State key Laboratory of Electronic Thin Films and Integrated Devices. University

of Electronic Science & Technology of China Chengdu, China. “A HW/SW Co-Verification Technique for Field Programmable Gate

Array (FPGA) Test”

[3] Universal Verification Methodology (UVM) 1.2 User’s Guide

(https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf)

[4] L.Rizzatti, R.Klein, S.Bailey, A.Meier. Rizzatti LLC, Mentor, A Siemens Business. “Application Optimized HW/SW Design &

Verification of a Machine Learning SoC”, tutorial presented at DVCon2020

[5] Shilpi Birla, Shikha Sharma & Neeraj Kr. Shukla (2017) UVM-powered hardware/software co-verification, Journal of Information and

Optimization Sciences

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf

