
 

1 
 

An Improved Methodology for Debugging UPF 
Issues at SoC level Power Aware Simulations 

 

Ruchi Misra ( ruchi.misra@samsung.com ) 

S Shrinidhi Rao ( shrinidhi.r@samsung.com ) 

Alok Kumar ( kumar.alok@samsung.com ) 

Garima Srivastava ( s.garima@samsung.com) 

Sarang Kalbande (sarang.mk@samsung.com ) 

Samsung Semiconductors India Research, Bangalore, India 

 
Abstract— With ever-increasing SoC complexity and advanced power-aware architectures, the challenges involved 

with Low Power verification at SoC level have grown in substantial proportions. While Unified Power format (UPF) 
standard enables designers to add power intent for the design, one of the toughest challenges faced in semiconductor 
chip design and verification is debugging issues related to UPF syntaxes or strategies. Issues in the power format file, 
the test bench, design or the tool can cause significant turnaround time owing to large run times and iterations involved. 
For low-power design and verification, these debug challenges are further complicated as a result of the sophisticated 
power management architectures and techniques that are used. Moreover, the traditional debug technology and 
methods focus on issues found in a design working in always-on mode and fails to address the new and complex power-
related issues thereby consuming more engineering time. In this paper, we will provide an in-depth analysis of various 
debug challenges and problems faced in low-power design and verification. By using relevant EDA tools and their 
targeted features, we will demonstrate how these issues can be either avoided or solved. Hardware engineers often do 
not leverage the debugging capabilities of EDA tools that allow user to debug the simulations in an interactive manner, 
leveraging breakpoints, live driver and signal analysis, power state networks and schematics. In this paper, we explore 
the methodologies involving interactive debugging for an efficient power debug and faster verification closure. 
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I.  INTRODUCTION 

Today’s most system-on-chip (SoC) designs are composed of different blocks running multiple applications 
with varying power requirements. This demands SoCs to partition design into multiple power domains as well as 
various operating modes with different and dynamically variable voltage levels. Interactions between these power 
domains are done through various power control logics like retention logic, isolation logic, level shifters, etc. The 
low-power designs demand aggressive power management, which demands complex design. As the complexity of 
the SoCs increase, the explosion in scope and intricacy caused by low-power design techniques cause significant 
difficulty of low power verification, as designer captures the power intent such as power switch rules, retention, 
isolation, and level-shifter rules in UPF (Unified Power Format) by separating from the RTL code.  

The UPF is an extension of the TCL (Tool Command Language) and is defined independently of the HDL 
(Hardware description language). This makes the low power intent creation independent of the design in place. 
This drives early development of the power distribution architecture, enabling parallel yet independent design and 
verification of low power architecture alongside the RTL design and verification. Addition of power format files 
along with RTL increases the low power verification effort hence as a part of complete verification process, all the 
added power modes, power sequences, and power-mode transitions need to be covered such that the design meets 
both functional and power intent. 

During the low power verification of a SoC with a real CPU RTL, test cases are written in C, and compiled 
using the standard compiler like ARMGCC. The hex code generated is then loaded on to the chip memory. When 
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the SoC reset is released, the power controller releases CPU reset, which reads the code from memory and executes 
instructions. The design along with UPF file is compiled using the EDA tool compiler. Compiler tools that support 
interactive debugging can be invoked by the use of TCL commands. Exploring signal probing, live signal forcing, 
enabling break points, step run feature along with the power state network, schematics and ability to dump voltage 
and power rail information enabled us with a very powerful tool to debug issues in Low power simulations  

 

II. RELATED WORK 

Series of programming languages like Specman-e, Cocotb/Python have been accustomed to the flexibility of 
interactive debug during run time. According to results in [1], employing an interactive debug library dramatically 
reduced debug turnaround time and regression run time. Engineers can re-run alternative scenarios in shorter time 
rather than waiting for hours for the test to complete. Multiple researchers have created libraries to support 
interactive debugging [1][2][3]). With interactive debug, user can run the simulation to a certain point in time, pause 
the simulation, perform debug actions and resume the simulation. Interactive debug in System Verilog is not a 
natively supported feature. Due to this, the user has limited control over the test scenario and program flow once 
the TB is compiled and simulation starts. If a user has to force or change stimulus to debug a long running test, 
precious time is lost which affects the verification closure time. With interactive simulation and debug support 
presented in this paper, one can pause the simulation at point of hang, debug, change stimulus if needed and resume 
to simulation, giving fine grained and advanced control over simulation flow. The work mentioned in this paper is 
uniquely fine-tuned to find multi driver issues, isolation issues and UPF syntactical issues across different compilers 
and hence is very useful in debugging.  

 

 

III. FUNDAMENTAL STRATEGIES OF LOW POWER DESIGN 

The low power designs leverage multiple techniques to achieve reduced power consumption during operation 
of the SoC [4]. These strategies are applied during the design and resource planning between multiple power 
domains and enabling low power yet efficient operation of the logic contained. Some of the key strategies utilized 
are: 

i. Isolation: Isolation is a technique that prevents flow of crowbar current and spurious signal propagation 
and prevents a dead logic form driving an active logic. Isolation cells are placed in between two power 
domains, such that the second power domain is isolated from the first when the first power domain is off. 

ii. Retention: Retention is a technique of saving certain logic state of memory state when the rest of the logic 
around it is powered down. This enables faster booting or logical operation once the surrounding logic is 
powered on. Retention cells ensure that retained logic is saved and restored without any possibility of 
corruption via leakage current. 

iii. Level Shifters: Level shifters ensure that sufficient and optimal voltage is available for logic that is driven 
between two power domains. These can be High-to-Low or Low-to-High voltage shifters. This ensures 
that logic value sent by one domain is correctly processed in the next irrespective of individual operating 
voltage levels. 

iv. Power Switches: Power switches are used to switch on or switch off the power supply to the power 
domains. The design of these switches varies according to the placement and speed of operation. These 
switches have many attributes such as internal power and threshold voltage that need careful attention 
during design. 
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v. Always-On Cells: These cells are always on, even when the surrounding logic is turned off. These are 
designed to ensure that critical logic is powered on to allow data or logic path for signal crossing between 
power domains. 

 

IV. UNIFIED POWER FORMAT STANDARD 

Unified Power Format (UPF) is the widespread name of the Institute of Electrical and Electronics Engineers 
(IEEE) standard for insist on power intent in power optimization of electronic design automation. Power domains, 
Supply networks, Power state table and Isolation are applied to the design which is of interest in this paper. 
 
A. Power domains: Power Domain is intellectual way to include the instance/block instances/block that shares the 
same supply should be included in one power domain. 
B. Supply networks: Supply network comprises of supply ports, supply nets. Supply ports consists of the VDD, 
VSS and supply nets which is used to provide the connection between the power domains and supply ports. 
C. Power State Table (PST): A Power State Table (PST) defines the legal combinations of all the states that can 
present at the same time during process of a design. 
D. Isolation: Isolation is a method which provides a definite performance of a logic signal when its driving logic 
is not active. An Isolation cell is used to pass normal logic value during normal operation and clamps its output 
to some definite logic value when a control signal is declared 
 
The design flow will get changed with the addition of UPF into the flow. Firstly, power intent should be designed 
followed by its verification to ensure the designed power intent is intact with the design. Next phase is simulation 
to capture the potential bugs in the design along with UPF. Conventional design flow is a straightforward 
mechanism as architects will finalize the design that will be implemented by RTL engineers followed by 
simulation, synthesis and physical design. The power aware flow adds the power intent into the design by means 
of a set of low power constraints. Along with RTL, UPF will be given as input file for the synthesis process.  
There are lot of processes that need to undergo to deliver final power intent of the design. 
 
At Architecture level: 

o Defining when the blocks are to be powered on or powered off. 
o Identifying and partitioning of the blocks which have common characteristics under single power domain 
o Specifying legal power states and their sequencing 
o Identifying the domain crossings that paves the way to invoke low power techniques or strategies such 

as retention, Isolation and level shifter.  
At RTL level: 
The constraints obtained from the architecture level are configured along with RTL which helps to, 

o Create power domains and merge power domains which are showing common characteristics. 
o Define Isolation strategies at the OFF to ON domain crossings to avoid floating of the signals. 
o Define Level shifter strategies at the domain crossings of different voltage levels to avoid voltage 

mismatches and power losses. 
o Define retention strategies to satisfy the retention needs. Apart these, there are certain steps need to be 

performed to complete the power intent design, 
o Create power switches. 
o Create supply nets and ports 

 

The power intent once brought up need to be verified to ensure the generated UPF is matching with the expected 
power architecture and that can be termed as power aware verification. It involves verification of power 
management schemes to ensure the design is operating as expected in all power states successfully. Different bugs 
can be deducted that can be classified into, 
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o Architectural bugs 

o Control sequence bugs 

o Structural bugs 

 

 The Verification is done at the RTL and netlist level to catch structural bugs in the design. Here are the few 
instances of the structural bugs: 

o Incorrect PG pins (Power Ground pins) connectivity. 

o Incorrect supplies to ISO cells, Level shifter cells and Always-On buffers -This indicates the supply set of 
an instance assigned in UPF is incorrect and conflicts with the supply set of instances in the design. 

o No Isolation strategy on a path that connects a powered OFF domain to a ON domain -This indicates the 
isolation cell is missing in an OFF to ON crossing. 

o No Level Shifter strategy on a path that bridges between two Power Domains of different voltages – This 
indicates the level shifter cell is missing in between two different voltage domains. 

 

V. TYPICAL CHALLENGES IN LOW POWER VERIFICATION  

Power Aware Simulation helps to capture architectural and control sequence bugs in the design. Control 
sequence bugs are resulted due to the timing mismatches between the events and unwanted transitions. Here are the 
few instances of control sequence bugs: 

o Input switching when the power domain is in corrupt state. 

o Transitions of the power states, which is illegal. 

o Early Isolation control disable, or Delayed Isolation control enable. Apart from the simulation of supply 
network based on UPF, power aware simulation will also perform the following, 

o Invoking virtual isolations cells and there by simulated in RTL for the strategies as mentioned in the UPF. 

o Simulating retention flops at RTL level as per the retention strategies mentioned in the UPF. 

o Propagating the ‘X’ value at the gate outputs and register contents when a corresponding power domain 
is OFF. 

 

The process of debugging in power aware simulation is much more complex as an error found in power-aware 
designs may well be caused by RTL functions or by the behavior defined in the power-specification. Verification 
of “Power intents” in aggregation with RTL remains a challenge with sprouting power format. One of the Major 
challenges in Power aware verification is to validate all valid states /Transitions and report invalid state/ transitions 
early in design cycle (Figure 1).  
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Figure 2 is a representative version of a design with low power features implemented. Power management unit 
(PMU) represented in green box implements the power state machines to control the complete power sequencing. 
This block is in 'always ON' domain i.e. there is no case when the chip will be powered but this logic will be shut 
down. There are 2 blocks A and B and their respective power domains (PD1 & PD2) defined wherein the PD1 can 
be shutdown independently of PD2 (Sleep mode) or both PD1 and PD2 can be shut down together (Deep Sleep 
mode). In absence of qualified signals from second block for a defined period, the power manager initiates Sleep 
mode. During Sleep mode, if there is a wake-up interrupt (from different sources with one represented here), the 
power manager initiates the wake-up cycle. To avoid re-initialization of the first unit, it is expected that the last 
functional state of the PD1 be retained. State retention cells help in saving the state of the block and restoring it 
when required. 

 

 

Let’s discuss some typical issues which we have encountered during the course of the work conducted as a part 
of this paper which were in Power-Aware verification of the SoC: 

i. Missing isolation cells: 

Let’s say design is in Sleep mode (Block A is Power OFF) and PD2 is in Power ON. In the absence of isolation 
strategy between PD1 and PD2 “X” or “Unknown” values will propagate from the output ports of Block A to Block 
B. 

ii. Incorrect Specification of Save Signal in UPF: 

If the states of PD1 did not get restored instead the signals shows “X” When PD1 is powered up after the sleep 
mode, it could be due to incorrect Save & Re-store Typically this kind of bug can be root caused by UPF 
modification: UPF developer who defines LOW assuming that the SAVE should happen when there is a transition 
from HIGH to LOW while the correct interpretation should have been that when there is an active HIGH pulse on 
SAVE, the values should be preserved. By replacing LOW by HIGH in UPF the problem can be resolved 

 

 

Figure 3: Incorrect UPF specification of restore signals can cause unknown value propagation 

 

iii. Missing Retention cell between Power Domain: 

EN input is driven from the Block A. During Normal mode of operation, the Block A would drive this signal 
based on the value programmed in the register. During Sleep mode, PD1 can be off while PD2 can continue to be 
on. An isolation cell is declared at the output of Block A that clamps the value of EN to HIGH. During NORMAL 
operation, the value of EN is HIGH. Once isolated, the value continues to be HIGH while the PD1 is powered off. 
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When Block B is powered on, the isolation is removed and after the clock is enabled, the default value of the register 
is driven. Since the default value is ZERO, Block B actually gets functionally disabled when the Block A is fully 
functional. After adding a state retention cell to the UPF for this register, desired functionality is achieved. 

iv. Incorrect connections of Power supply to power domains: 

If for example there are 2 voltage supplies each connected to Block A and Block B. These supplies aren't present 
in RTL and specified in the UPF. Corresponding to these supplies there are power switches with the enable to the 
switches coming from power manager based on the Sleep or Deep sleep mode. In this case, if the UPF definition 
had an incorrect connection to the power switch for Block B, during power aware simulations, in Sleep mode, 
instead of turning off Block A alone, the Block B will also turn off i.e., instead of Sleep mode, the chip actually 
will go to Deep sleep mode. 

VI. DEBUG SOLUTIONS  

Power–related error during verification can be due to Error found in PA designs “caused by RTL” or the 
behaviour defined in the “power specification code (UPF)” hence it is critical need for debug tools to understand 
the power specifications and ease the verification effort by providing additional capabilities. The methodology used 
in this paper helps us to identify: - Schematic representation of power intents - The power aware signal types 
(Retention signals, Isolation signals or level shifter signals) in waveform - Trace power related unknown or “X” 
and help validator to know specific signals belongs to which Power domain. Figure 4 below depicts the steps of 
traditional debug flow and the new improved flow. 

 

 

Figure 4 : Comparison of traditional debug flow with live simulation flow  

 

The brief category of the features of interactive debug used as a part of this paper are as below: 

 Breakpoints: User can place breakpoints on signals, based on signal values and transitions, enabling 
accurate control over when a simulation should be paused. This enables the user to pause the simulation 
right before the point of hang or error.  
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Figure 5 : Breaking the flow of simulation using breakpoints 

 Stepped runs: User can run the simulation in steps of delta time, or based on each edge of the clock, 
enabling fine grain observation of the simulation flow, signal changes and code tracing.  

 

Figure 6 : Controlling the flow of the simulation via the use of stepped runs 

 

 Live Signal tracing: At each paused step, user can analyse drivers and loads of a signal keeping track of 
values, which helps understand the root cause of a signal transition failure down to the exact time stamp 
and error signal. 

 

Figure 7 : Analyzing signal drivers in order to understand root cause of the issues 

 

 Live Code analysis: User can also trace signal values directly at the HDL, understanding RTL behavior at 
each step of simulation. User can also walk through the UPF files enabling easier debug of missing power 
intent specifications. This enables users to identify more uncommon issues like tool misbehavior and UPF 
misinterpretation. 

                

Figure 8 : Analyzing UPF and source code at paused step 
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 Live Signal forcing: User can force and release signal according to need, enabling fine grain control over 
signal values, which enables DV engineer to check solutions to hang mid simulation. This also enables 
engineers to understand effect of different legal values of signals to the simulation behavior. 

     

Figure 9 : Forcing signals to legal values mid simulation to understand analyze in behavior 

 

 Power State Network: Power schematics show connections between power rails and switches in visual 
mode. Leveraging this, engineers can identify broken connections and corrupt power rails and switches. 

 

                    

Figure 10 : Power State Networks help analyze UPF connections graphically 

 

VII. EXPERIMENT WITH THE INTERACTIVE DEBUG 

 As a part of this paper, we have used Interactive debug capabilities of a standard simulator, combined with GUI 
modes of the Debugger, and we have successfully been able to speed up our debug time and cut down time for 
iterations. To validate the reduction in run time, we did an estimate of debug time and issue resolution time in a 
non-interactive debug environment and compared it against the debug time observed by us. 

Our experiments were run on the Exynos Mobile SoC and Exynos Automotive SoC to debug real low power 
simulation hang issues. We were able to debug multiple complex misbehaviors in the RTL using the above-
mentioned methodology. Some of the debugs were root caused to issues in the integration of UPF files with the 
Design environment either to IP-SoC environment tool differences, or the integration issues. We generally start our 
failure analysis with non-interactive debug methodology and later switch to interactive method when issue is 
complex to be identified. We picked three such complex cases to analyze the debug time improvement in interactive 
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debug. We also do a case study of a new low power verification environment bring up time using interactive debug 
method. 

 

Figure 11 : Interactive and Non-Interactive debug times as components of the complete debug time 

Engineers in [1] proved that the debug turnaround time for a typical simulation failure has been reduced by 
90%. The total simulation time reduction for the regression run was observed by the engineers to be 25%.  We saw 
a similar observation that, out of 23 days taken to debug the issue in test case 1, the first 21 days were spent on 
debugging the issue by traditional method. Once we switched to interactive mode, we identified the issue within 2 
days. This debug involved stepped runs from a delta timestamp before the point of concern, live signal driver 
tracing, source code and upf analysis, and PSN analysis at each delta step of the simulation run.  

Issues in test cases 2 and 3 were caused by tool misbehaviors which were later fixed by the vendor. When these 
issues were functionally checked with the waveform at the point of hang, we did not observe any RTL logic that 
caused error. This made it difficult to explain the cause of the error. Eventually we switched to interactive debug 
mode, to understand the cause of pain point, step by step by leveraging all the possible solutions provided for 
interactive debug mode. The issue was later flagged as a tool issue after extensive debugging and support from the 
tool vendor. We observe that the time taken for interactive debug of the issue is around 65% of the total debug time, 
but these complex issues could only be identified using interactive method, as the first 35% of debug time did not 
provide any clue on the issues at hand.  

Test case 4 was a new low power test bench that was being set up. Since we had prior experience on debugging 
through interactive method, we switched to interactive debug right from the beginning of the test bench and design 
environment bring up. It took about 16 days for the setup to mature and we were able to identify multiple issues in 
integration of the UPF with design within this timeframe which would not have been possible by traditional 
methods. Issues such as missing isolation cells, improper voltage source connections were easily identifiable using 
live signal analysis in interactive mode. 

VIII. RESULTS AND CONCLUSION 

Because Power aware simulations have large run times owing to the complex designs and integrated united 
power format files (.upf), they are often plagued by UPF integration issues with design which are hard to debug. 
Hence low-power simulations are usually the bottlenecks to Verification sign-off. More often than not, DV 
engineers find themselves in a situation where they cannot afford multiple iterations of the test cases. Hence there 
is a need to cut down time taken for debug to enable faster verification closure.  

We observed a reduced time of debugging as the engineers have better insight on the behavior of the system at 
each timestamp, enabling better reasoning. Some of the issues with complex root causes could only be debugged 
by leveraging the interactive mode and it would be difficult to identify them in non-interactive methodology. The 
ease of debug and better root causing strategy led us to adopt this methodology in subsequent projects which are 
being executed currently. 
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