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Abstract— The traditional ASIC/SoC development process uses the waterfall methodology, where verification 

occurs at the end of the design process and comes with some significant difficulties.  It leads to long verification closure 

loops, where bugs introduced early in the process are found at a very late stage, leading to higher costs and possible 

ASICs or SoCs manufacturing delays. Today’s modern SoC development workflows address this issue by starting 

verification activities before the implementation phase [1][2], often referred to as “verification shift-left.” Several 

discussions about “software shift-left”: how to enable software design (and, consequently, hardware/software co-

verification) have arisen recently in the pre-silicon design phases using techniques that allow "virtualization” of the 

hardware being designed [3][4]. This paper outlines a model-based framework where both hardware and software are 

modeled in the same environment, and the hardware model is used as a virtual platform for software development, 

allowing concurrent development. This framework allows software development to occur significantly earlier than 

more traditional workflows and enables better collaboration between teams. Both hardware and software bugs can be 

found early, and using code generation techniques enables automatically generated C/C++ code from the software 

models directly to pre-silicon verification. This leads to a significantly shortened time-to-market and better overall 

system quality. 
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I.  INTRODUCTION 

The described approach has been applied to the Nokia 5G Digital Front End (DFE) design, which conditions 

the base station radio unit SoCs carrier signals before being sent to DACs, the power amplifier, and the antenna. A 

typical DFE characteristic is its algorithmic complexity, consisting of digital up and down conversion, digital pre-

distortion, crest factor reduction, channel filtering, gain control, composite carrier combination and separation, and 

many others. Most of these operations are implemented as complex signal processing algorithms running at high 

sample rates. An additional DFE characteristic is the need for configurability. In fact, designs may need to support 

several wireless standards and different configurations for network operator needs. These DFE characteristics lead 

to a very high implementation complexity. For instance, the design area can equal several hundreds of millions of 

gates, and a full register configuration consists of several megabytes. This complexity is often accompanied by hard 

time-to-market pressure and competitive solution demand. These 5G SoC verification challenges were also 

addressed in a DVCON Europe 2022 keynote [5]. 

The SoC development process also introduces hard pre-silicon verification deadlines because of the long lead 

times for getting the actual physical chip samples after the tape-out. Using test scripts/code is the fallback solution 

if software is unavailable, which is wasted labor and opportunity for shift-left testing. “Shift-left” refers to moving 

quality activities, such as hardware verification, software testing, deployment, releasing, etc., earlier in the project 

timeline. It is based on the observation made famous by Barry Boehm [6] that the cost of fixing a defect rises 

exponentially the longer it takes time to find that defect. The traditional waterfall process would be inefficient under 

these conditions, given the cost it imposes on design iterations in terms of time and effort. 

The authors defined a model-based workflow to overcome these challenges. Hardware and software are 

modeled within the same environment, allowing development to be carried out simultaneously and started as early 

as possible. Coupled with C/C++ code generation techniques, this enables maximum reuse of other teams’ 

contributions to the model and fast software deployment for hardware verification in pre-silicon phases. This 

ensures that effective hardware verification takes place before critical deadlines, using the same software in the 
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final product. This significantly increases software quality and yields cost and schedule benefits according to shift-

left testing principles. This also increases the hardware verification coverage, as the more mature software allows 

more thorough pre-silicon environment testing – this simply cannot be done in models due to design size. 

A stable interface is a key enabler for starting complex design software development with many parameters. 

Traditionally, this has been the register interface. However, a parameter-based abstract low-level API is used instead 

to begin before such details are available. This API is explained in more detail in Chapter III. 

II. MODELING FRAMEWORK 

Figure 1 depicts the Model-Based Design workflow in Nokia 5G development, with different modelling phases 

moving from high to low abstraction, finally targeting real hardware or pre-silicon environments like an emulator. 

Phases move forward as time progresses, but it is also possible to move back to lower abstraction to analyze 

problems found later in development. This is enabled because the use case configurations are common for all phases 

except the level of details in model changes. The medium abstraction phase is important from the software 

development view because it defines the functional split, parameters, and their types between hardware and 

software. This leads to defining the software algorithms and the hardware abstraction layer described more 

thoroughly in Chapter III. This enables software development teams to start their design process early in the 

MATLAB/Simulink model and run complex closed-loop simulations on key use case configurations before any 

hardware is available. Software can be deployed quickly with the help of code generation tools to pre-silicon 

environments, such as emulators or FPGA prototypes, when available. As the model acts as a golden reference for 

RTL verification, it is already verified that the software model provides correct configurations, and the pre-silicon 

activities can be more focused on system integration and longer test scenarios.  

 

 

Figure 1. Model-Based Design workflow in Nokia 5G 

 

III. ABSTRACTION LAYERS 

One of the key elements in using virtual models before RTL is available is creating a Hardware Abstraction 

Layer. This enables software to use low-level configuration API and hide the actual register interface, which comes 

later in the RTL release. With thousands of configuration parameters, special care needs to be taken to avoid 

additional mapping and synchronization between the abstract parameters and registers. The principle behind 

defining abstraction layer parameters is that they should be defined with the same level of precision as the signal 

format used between hardware blocks. They can be used as the basis of register content if they are well-defined 

according to the algorithm’s needs. Abstraction layer parameters can be considered the logical representation and 
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registers as the physical representation of the same content. Of course, hardware can have parameters the model 

does not have, but not vice versa. This way, a hardware extension API can be made in addition to the abstraction 

layer to handle the hardware-specific details, like enable-based signaling. Figure 2 shows the framework’s software 

layer structure. The Abstraction Layer API is the interface that has different implementations based on user needs. 

The Abstraction Layer to Model Implementation can be automatically generated by the tool and used when running 

the model. The Abstraction Layer to Register Implementation, which maps the parameters to register values, can 

be used when running with hardware (i.e., generated code). This needs to be manually created into the template 

generated by the tool when the register definitions are available. Finally, an extension API can be created manually 

for configurations that only exist in hardware. 

 

 

Figure 2. Structure of software layers in the design framework 

 

A special custom tool was created in collaboration with MathWorks for the Abstraction Layer creation. The 

tool generates the output shown in Figure 3. It takes carefully defined, fixed-point type parameter inputs as 

MATLAB structures and transforms those into an Abstraction Layer API. Each parameter will get corresponding 

get- and set-functions with documented fixed-point types for each parameter. As a result, the software team gets an 

API for early software development based on one specification, the MATLAB structure data type. It can be used 

in the MATLAB/Simulink environment and real software with the help of code generation. Since this API hides 

any details underneath, it is future-proof for adapting this solution to other virtual platforms. It should be noted that 

this solution is not just about tooling but also about creating a single point of parameter specification together with 

modelling, hardware, and software teams. The better the specification, the fewer changes need to be made during 

the project. It may also potentially avoid struggling with different model, software, and hardware versions. 
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Figure 3. Hardware Abstraction Layer tool flow 

 

IV. TOOLS USED FOR SUCCEEDING IN SHIFT-LEFT 

The Model-Based Reusable Framework presented in this paper was developed in close collaboration between 

Nokia and MathWorks using tools from the MathWorks product portfolio. The high-abstraction functional models 

were programmed in MATLAB using an object-oriented design approach. Therefore, a code organization level 

could be achieved that helped with maintainability, reusability, and collaboration from the beginning.  

The functional and reference software models could be derived from the original MATLAB code. System 

Objects – an object-oriented programming construct used for building, simulating, and implementing dynamic 

systems – were the base of the configuration-intensive part of the software reference model later generated into 

C++ code. MATLAB Coder was used to generate function-call-based C and C++ from MATLAB code and 

preserve the same kind of structure and interface of the MATLAB code in the generated code. 

The control part of the software reference model was designed in Simulink to allow for closer hardware 

implementation, including discrete-time simulation. Integrated state machines for real-time control were modeled 

in Stateflow, which provides a graphical, powerful, and intuitive environment for modeling, simulating, and 

implementing complex systems with dynamic behavior. Also, the hardware reference design was modeled in 

Simulink and controlled through the MATLAB API and Stateflow charts, as seen in Figure 4. Fixed Point Designer 

helped define custom data types for signals within the design and for the parameters.  

Embedded Coder is used to generate real-time, optimized, target-specific, and scheduling-based C code since 

the control part of the software is targeted to run on a real-time processor. The coder product also has many more 

features, like software-in-the-loop (SIL), used to verify the generated code independently of MATLAB/Simulink. 

Automatically generated reports and traceability between requirements, models, and generated code helped to 

review and document the output. 

Furthermore, the verification is fully automated by using a class-based unit test framework that can be used for 

full simulations and testing the hardware abstraction layers. Continuous integration (CI) is one of the key practices 

in modern agile development processes. MathWorks supports this by providing an easy integration to CI tools like 

Jenkins. This enabled running simulations, tests, and even code generation continuously controlled by the CI tool 

and helped to detect issues early and to run lengthy operations, for example, overnight. 
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Figure 4. Simulink based design flow for the HW and SW reference model 

 

V. RESULTS  

We estimate the described model-based framework, coupled with code generation techniques, shortened the 

development cycle by about 30-40%. The projects are long, and there are variables that make direct comparison to 

previous projects difficult due to the DFE ASIC’s complex nature. These variables include resourcing, 

requirements, organizational structure, and available equipment. However, the most important goal of executing 

verification using real production software was achieved for the first time with key test cases before the critical 

milestones. This has enabled more thorough testing with less wasted effort and increased software quality due to 

the shift-left testing. This quality improvement will yield accumulative benefits as building a base station product 

will continue with many additional software layers and customization for multiple product variants. 

There were also other positive findings from the model-based approach. Because of the common model used 

for algorithm, hardware, and software development, there was improved collaboration and communication across 

the teams. The model enables teams to analyze problems found in pre-silicon testing and find more suitable 

parameters and new use cases. Also, the software shift-left testing starts already in the model. The same software 

model is used for hardware model configuration, testing it for algorithmic correctness, and providing test vectors 

and configurations for RTL verification. Therefore, the software model has already undergone many testing steps 

before entering the code generation phase. 

Another key aspect is reusability. After the initial investment in model and framework building, these can be 

reused to build new products by scaling the design, adding or removing parts, and retargeting the code to other 

processor environments (i.e., switching from C++ to C). This makes new product development closer to branching 

than building everything from the ground up. There is also the reuse of work effort as algorithm designers can 

already implement changes in the parametrization of certain design parts, and the software team only needs to 

integrate the generated code. 
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VI. FUTURE ENHANCEMENTS 

 

In the application presented in this paper, the design focus was on the algorithmic complexity and design 

configuration for a particular use case. Since the algorithms were already developed in MATLAB, it was natural to 

use the same design environment and reuse the existing design as a starting point for software development. 

However, having another virtual platform for integration and testing would be beneficial before going into pre-

silicon environments, like emulators, FPGAs, or sample boards. These environments are tightly coupled with the 

hardware schedules and generally have limited resources that are expensive for trivial testing. A virtual platform 

could be a solution where software can run on a virtualized SoC model, like an Instruction Set Simulator or QEMU. 

At the same time, the hardware would be a MATLAB/Simulink model. Such an approach is presented [7]. Adopting 

the same kind of approach would enable testing of other features like data transfers, interrupts, inter-processor 

communications, and other peripheral configurations rather than just algorithmic correctness. This would also allow 

the integration and testing with other system components in an early project phase, even before RTL is available. 

This inexpensive and replicable virtual platform would be a beneficial step between subsystem-specific algorithm 

simulation environments, like MATLAB, and pre-silicon environments. 

The suggested framework will bring extra benefit in helping to integrate the models and software because the 

Abstraction Layer API will hide the used environment from the software. Since the API and the model use the same 

parameters, there is also no manual mapping necessary. Parameters can be considered model registers, and no 

further mapping is needed besides some scripting. If the actual register interface is introduced later, it can be added 

without changing the software developed on top of the Abstraction Layer API. 

Thorough documentation of the framework and workflow is needed as a further enhancement to make the 

adoption easier for new developers. Understanding the workflow’s big picture is crucial as the model is a 

collaboration between different teams and forms a digital thread from algorithm design to final product. Avoiding 

dependencies also needs special attention. For example, having HW details like register content information in the 

model results in having cyclic dependency between the model and a specific HW version. 

 

VII. CONCLUSION 

Developing software for today’s Digital Front End SoCs faces challenges regarding design validation software 

availability. This can be generalized as a problem for any large ASIC design, which can be characterized as 

algorithmically complex, highly configurable, and with many configuration parameters and hard time-to-market 

pressure. The tremendous effort needed for modelling, verification, and software implementation in a short time 

period before the design tape-out is the common denominator of these kinds of designs. Real production software 

for pre-silicon verification avoids wasting test scripting labor, enables more thorough testing, and improves 

software quality. It also reduces possibly finding costly bugs as the productization continues. 

The described model-based reusable framework was introduced to enable early software development and fast 

deployment with the help of code generation. The development cycle was shortened as a result, and the hardware 

verification was completed using real production software for the first time. Apart from the software quality 

increase, due to verification shift-left, there were also other positive findings in the model-based design approach, 

namely in cross-team collaboration and communication. The framework's reusability will also make future product 

development faster and more predictable. 

The described approach was applied to the Nokia 5G Digital Front End design. It can be used for any IP 

development that includes software and hardware complex enough to benefit from modelling. However, it is most 

beneficial for large SoC/ASIC designs where software implementation effort is so considerable that it is difficult 

to have a version mature enough for hardware pre-silicon verification. 
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A new virtual platform was proposed as a future enhancement. QEMU- or Instruction Set Simulator-based 

SoC/processor models could be integrated with existing Simulink models. This would provide an inexpensive and 

easily replicable environment for integrating generated software and different hardware models before proceeding 

to more expensive and reduced access to pre-silicon environments like emulators. The proposed framework would 

also benefit this new platform because of the direct mapping of the Abstraction Layer and model parameters. 
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