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Abstract—In this paper we discuss how assertions can be applied for the design and verification of mixed-signal 

virtual prototypes based on SystemC/AMS [1][2]. In particular, we propose a SystemC assertions library with a user-

friendly API which enables specification of complex mixed-signal behaviors. We show that the assertions library is 

designed to handle heterogeneous systems containing mixed-signal characteristics, transactions, and software. Further-

more, we explain how assertions can be easily and intuitively used to specify the DUV behavior across multiple domains. 

Using ARM Fast Models-based temperature control system we show how our proposed SystemC assertions library can 

be used to verify the DUV. 
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I.  INTRODUCTION 

Heterogeneous systems have significantly altered the requirements of modern System-on-Chips (SOCs). Con-

sequently, many semiconductor vendors are shifting their focus towards a more integrated solution of high-perfor-

mance Analog/Mixed-Signal (AMS) design with Software (SW) running on top. In this regard, Virtual Prototypes 

(VPs) implemented using SystemC/AMS together with Transaction Level Modeling (TLM) are widely used for 

Hardware (HW)/SW co-design [3-5] [15-22]. The AMS part of SystemC allows it to model analog behavior through 

different Models of Computation (MOC) like Timed Data Flow (TDF) and Electrical Linear Networks (ELN). 

Presently, digital designs are functionally verified with the help of SystemVerilog [9] using Assertion Based 

Verification (ABV) in combination with coverage analysis [1] and constrained randomization techniques [7][8]. 

ABV defines temporal properties to verify the functional correctness of the design with respect to expected behav-

iors. Several approaches have also been proposed for SystemC/AMS-based models/VPs [10-14]. However, they 

either run into state-space explosion problem or do not consider mixed-signal interactions, e.g., SW, TLM, and 

analog. Hence, one of the main challenges is the availability of a practical and publicly available assertions library 

for SystemC/AMS design verification which enables ABV methodologies. A SystemC/AMS assertions library 

should satisfy the following: 

1. Expressiveness to represent complex behaviors. 

2. SystemC, TLM, and SystemC/AMS compatibility. 

3. Complex cross-domain interactions capturing, i.e., analog-digital-SW interactions. 

4. Integration of complex heterogeneous characteristics like continuous time, frequency analysis etc. 

In this paper we present a SystemC assertions library which satisfies the aforementioned features. The library 

provides an intuitive Application Programming Interface (API) for assertions specification and follows SystemVer-

ilog Assertions (SVA) library closely. Furthermore, it supports SystemC/AMS, TLM, and continuous time evalua-

tion. Additionally, the library enables capturing of complex behaviors, as well as HW/SW and TLM interactions. 
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Hence, the SystemC assertions library enables ABV for heterogeneous systems. The experiments on a real-world 

temperature control system model using ARM V8 based CPU (ARM Fast Models) demonstrates the capabilities of 

the library to improve the system verification in a significant way. Please note that the SystemC assertions library 

is still a work-in-progress. The API and some use cases are described in this paper. 

II. ASSERTION LIBRARY OVERVIEW 

For SystemC there is no assertion library in public, which has an expressiveness compared to SVA. A first effort 

was made in [14] to make assertions available for SystemC that can be translated to SVA, however only a small 

subset of SVA is supported, especially complex timing sequences are not possible. Also, the focus is set on synthe-

sizable assertions.  

One of the main challenges when implementing assertions for SystemC is that the assertions are bound to the 

restrictions of the C++ language. We choose to implement our language as a standard C++ library based on Sys-

temC/AMS and TLM. In addition to the challenge of designing an easy understandable API for assertions, Sys-

temC/AMS covers a different level of abstraction as SystemVerilog. SystemC/AMS allows to describe heteroge-

neous characteristics like continuous time, frequency analysis, slopes, and equation systems. Such systems often 

lack the notion of a clock. The usage of simulation events is at the moment insufficiently integrated in known 

specification languages. Therefore, our SystemC assertions library considers all these conditions for bridging the 

gap of ABV for heterogeneous designs. The SystemC assertions library is developed with an intuitive, user-friendly, 

and an expressive API. It is not intended to use any formal methods at the back-end rather it focuses on the simu-

lations only.  

The library itself follows the principles of SVA extending it to heterogenous system use-cases. It is imperative 

to mention that to enable the API expressiveness, a layered architecture inline with SVA layered architecture is 

used, i.e., boolean layer, sequence layer, property layer, and verification layer. At the back-end, first the assertion 

is divided into different layers and expressions, then multiple SystemC processes are spawned to monitor the signals 

and events specified in the expressions. Each assertion is synchronized to simulator calculation points (notion of 

discretized time) of DUV as defined by SystemC/AMS semantics. Assertions are evaluated over time based on an 

event tick (clock edge or repeated time). If the specified expressions evaluate to true, the assertion is satisfied. The 

library is developed in pure C++  without external library dependencies and is compatible with the IEEE Sys-

temC/AMS standards. It is simulator agnostic, hence, it can be directly used in any SystemC project. 

III. ASSERTION LIBRARY FEAUTURES 

A. Introductionary example 

A complete example assertion using our SystemC assertions library is shown in Figure 1. The assertion checks 

the behavior of two SystemC discrete event signals sig_a and sig_b (Line 1-2). It says after sig_a is true within 1 

or 2 clock cycles sig_b has to be smaller than 10. To use signals in the assertion language, they must be wrapped 

in an expr object (see also Section III.B) corresponding to their type (Line 4-5). In Line 7 a temporal sequence seq 

is defined that describes that the sig_b has to be smaller than value 10 after a delay of one/two clock cycles. The 

1. sc_core::sc_signal<bool> sig_a("a"), clk("clk"); 

2. sc_core::sc_signal<int> sig_b("b"); 

3.  

4. expr<decltype(sig_a)> expr_a (sig_a); 

5. expr<decltype(sig_b)> expr_b (sig_b); 

6.  

7. sequence seq = true | delay(1,2) | expr_b < 10; 

8. property example_prop = expr_a ->* seq; 

9. example_prop.default_sampling(clk.posedge_event()); 

10. ASSERT_PROPERTY (example_prop); 

 

Figure 1: Assertion library example 



 

 

 

final property, which is checked is an implication that says if sig_a is true the sequence seq has to hold (Line 8). 

To run an assertion a default sampling event can be specified, this states when the assertion is started and how to 

interpret delays in the delay operator. To actually schedule assertion the macro ASSERT_PROPERTY is used. In 

the following sections the different building blocks of the assertion library are described. 

B. Boolean layer 

The boolean layer of the SystemC assertions library describes the atomic behavior of signals, events, and vari-

ables. The signals are related to each other using various operators, e.g., arithmetic operators. The SystemC asser-

tions library supports all SystemC/AMS datatypes. To use them within an assertion they must be wrapped within 

objects of type expr. A non-comprehensive list of supported boolean operators is shown in Table 1. The expr objects 

are combined using the boolean operators to make an expression which returns a value that must be comparable.  

The expr class implements thereby the access to the value of the wrapped object e.g., it calls the read () function of 

a sc_port. Additionally, it supports C++ lambda expressions to define complex functionality inside an assertion. 

The Lambda expression can be defined as shown in Figure 2. In this example the lambda returns an integer by 

calling the arbitrary function. This expression is always triggered when the assertion gets evaluated at its corre-

sponding time point 

 

Table 1: Non-comprehensive list of supported boolean expressions by SystemC assertions library 

Operator Name 

+= -= /= *= &= |= Binary assignment operators 

< <= > >= Binary relational operators 

+ - ∗ = Binary arithmetic operators 

&& || == != Binary logical operators 

+ - ! ++ – Unary operators 

C. Sequence layer 

Following the layered architecture of SVA, the sequence layer builds on top of boolean layer to specify the 

temporal relationship between boolean expressions. Furthermore, the sequence layer also specifies sequences as 

either a combination of simpler sequences using sequence operators or as basic boolean expressions over events. 

The SystemC assertions library provides several operators like delay () and repeat () to specify the behavior over 

time. A non-comprehensive list of supported sequence operators is shown in Table 2. To chain expressions within 

a sequence in C++ a special operator is required. We use therefore the pipe operator ( | ) to represent the continuity 

of a sequence.  

As the sequence layer builds on top of boolean layer, it evaluates the boolean expressions at evaluation time 

points by the SystemC events. This can either be a default event described by a SystemC event, but also a simulator 

event specified using a SystemC time. 

  

1. expr<std::function<int(void)>> lambda { []() { 

2.            return calc_average(); 

3. } }; 

4. auto expr_lambda = lambda < 3.0; 

5. ASSERT_PROPERTY (expr_lambda); 

Figure 2: Lambda expression operator example 



 

 

 

Table 2 Non-comprehensive list of supported sequence operators by SystemC assertions library 

Operator  Description 

delay 
Specifies delay from current sampling point until 

the next 

and Sequence and operation 

or Sequence or operation 

repeat Repetition operator 

| Sequence continue operator 

 

Delay Operator The SystemC assertions library introduces delay operator as shown below 

 

The function of delay operator is to create a relationship between boolean expressions over a period of time or 

between the given time constraints. The sequence seq1 in above figure (Line 2) defines a sequence where 

expr_b is evaluated 3 default sampling events after expr_a. Similarly, sequence seq2 (Line 4) defines a sequence 

where the delay between two expressions can be between 1 and 3 milliseconds. 

 

Repeat Operator The library supports repeat operator which is used to specify a consecutive repetition of the 

left-hand side operand as shown below 

It helps in cases when a certain set of expressions are expected to be true over multiple time points. E.g., seqr1 

in (Line 2) defines a sequence which is repeated twice, i.e., seq1 is equivalent to 

expr_a | delay (3) | expr_b | delay(1) | expr_a | delay (3) | expr_b 

D. Property layer 

The property layer allows for more general behaviors to be specified, i.e., specification of properties as either a 

combination of simpler properties using property operators or as an implication built up from several sequences. 

The properties and their respective sequences (including boolean expressions) are evaluated on each sampling event 

of the system’s default sampling time, unless specified. A non-comprehensive list of supported property operators 

is shown in Table 3. 

Implication Operator An implication refers to a scenario in which in order for a behavior to occur, a preceding 

sequence must have occurred. This preceding sequence in this case is known as antecedent. The succeeding be-

havior is known as consequent. Evaluation of an implication starts through repeated attempts to evaluate the an-

tecedent. When the antecedent succeeds, the consequent is required to succeed for the property to hold. It is de-

fined as  

antecedent - > ∗ consequent 

where - > ∗ = overlapping implication operator 

 

1. // delay (delay_cycles) 

2. sequence seq1 = expr_a | delay (3) | expr_b 

3. //delay (min_delay_cycles, max_delay_cycles) 

4. sequence seq2 = expr_a | delay (sc_time(1, SC_MS), sc_time (3, SC_MS)) | expr_b 

1. // repeat (value) 

2. sequence seqr1 = expr_a | delay (3) | expr_b | repeat (2) 

3. //repeat (min_value, max_value) 

4. sequence seqr2 = expr_a | delay (3) | expr_b | repeat (1,3) 

1. expr expr1 = a_int < 42; 

2. sequence expr2 = true | delay(1,2) | expr_a + expr_b; 

3. property non_overlap = expr1 ->* expr2; 

4. ASSERT_PROPERTY (non_overlap); 



 

 

 

Please note, currently the SystemC assertions library does not support the non-overlapping operator unlike SVA. 

However, the API can be leveraged to create non-overlapping operator’s functionality, e.g., it can be built using 

delay (…) operator. 

Overlapping Implication In the assertions library we introduce an overlapping implication operator (->*). This 

means that if the antecedent sequence is evaluated to true, the consequent sequence is evaluated at the same time 

point. An example of assertion using overlapping implication operator is shown in above example. 

 
Table 3 Non-comprehensive list of supported property operators. 

Operator Description 

not  
the evaluation of the property returns the opposite of the evalua-

tion of the underlying property expression 

and  
The property evaluates to true if, and only if, both property ex-

pression 1 and property expression 2 evaluate to true. 

or  
The property evaluates to true if, and only if, at least one of prop-

erty expression 1 and property expression 2 evaluates to true 

E. User functions 

The API of SystemC assertions library provides assertion evaluation function so that the defined assertion can 

be evaluated at run-time. A macro ASSERT_PROPERTY (…) is used in this regard as shown below: 

 

 

 

 

 

 

 

The advantage of the macro is that it provides the access to code line numbers during debugging. Consequently, 

if any assertion fails, exact line number is known. Furthermore, the API provides functions to set default clock of 

the assertions library if all assertions use the same clock course. Additionally, a default sampling function (de-

fault_sampling(…)) is also provided to setup the sampling frequency. This is shown in above code snippet (Line 

4). 

IV. LIBRARY IMPLEMENTATION 

The SystemC assertions library is implemented in C++ and it leverages the C++ features, i.e., operator over-

loading is used for different operators, e.g., arithmetic operators. This enables a user-friendly syntax. The architec-

ture of library is shown in Figure 3. Once the assertion is specified using C++ constructs, it is traversed using a 

visitor pattern. The visitor pattern provides the functionality to transform the defined assertion into an Intermediate 

Representation (IR). The IR is in the form of data structures defined to store and use assertions information at 

1. expr expr1 = a_int < 42; 

2. sequence expr2 = true | delay(1,2) | expr_a + expr_b; 

3. property non_overlap = expr1 ->* expr2; 

4. non_overlap.default_sampling(1_SC_US); 

5. ASSERT_PROPERTY (non_overlap); 

Figure 3: SystemC Assertions library architecture overview 



 

 

 

different stages of evaluation. Depending on the assertion, SystemC threads are created for parallel execution. Each 

assertion is evaluated in a separate SystemC thread so that AND/OR sequence and property operators also function 

properly.  

V. CASE STUDY – TEMPERATRUE CONTROL SYSTEM 

A. Case-study Setup 

We present here a real world complex heterogeneous system as a case-study (Figure 4) to showcase the features 

of the library. The system models a temperature control system covering multiple domains, i.e. SW, digital HW, 

and analog behavior. The system is modeled in SystemC/AMS using different Models of Computation (MoC), in 

particular Timed Data Flow (TDF) and Electrical Linear Networks (ELNs). The overall system as shown in Figure 

4 consists of the following components: 

• an ARM V8 based CPU using ARM Fast Models implemented as SystemC TLM with Linux operating 

system and SW running on top, 

• four ADT7420 temperature sensors implemented as SystemC/AMS TDF and discrete event model, 

• an Advanced Microcontroller Bus Architecture (AMBA) bus that acts as a bridge device to connect temper-

ature sensors and ARM processor (created in SystemC TLM) – (COS_AMBA_DEVICE in Figure 4), 

• an environment model (Thermal_Network) that builds 3 connected rooms and an ambient temperature mod-

eled as a sinus (SIN_SRC_TDF), i.e. each sensor senses a different temperature (implementation as Sys-

temC/AMS ELN and discrete event model), 

• a heater model implemented as SystemC/AMS ELN that can be used to increase the temperature. 

The communication between SW running on the processors and the connected sensors is done via registers 

connected to the bus of the processor. The SW configures the sensors by writing to addresses on the bus, which in 

turn creates TLM transactions. These TLM transactions are written into the corresponding registers of the ADT7420 

sensors. The COS_AMBA_DEVICE translates the AMBA-PV transactions used by ARM Fast Models to I2C 

transactions of the sensor model. To showcase the features of proposed system-level assertions library, the running 

example considers the following scenario for demonstration purposes: 

• booting a Linux operating system on the ARM processor,  

• a control SW is executed on top of Linux. The control SW continuously measures (monitors) the temperature 

sensor output, 

Figure 4: Case Study: Temperature control system 



 

 

 

• if the SW detects that the temperature value falls below a programmed threshold value, it switches the heater 

to ON state, 

• otherwise, when the temperature exceeds a certain programmed threshold, the heater is switched to OFF 

state. 

For demonstrating the features of the proposed SystemC assertions library, we use the following assertion: 

• When the temperature of Room 1 t_r1 (SystemC TDFsignal) is above the threshold t_threshold (SW-con-

trolled TLM register value), the heater must be switched off (heater_sw) within 1 ms. 

This assertion can be specified using our proposed SystemC assertions library as follows: 

 

B. Simulation Results 

Partial simulation results of the temperature control system SW are shown in Figure 5. The orange sinus signal 

is the ambient temperature (SIN_SRC_TDF) which oscillates between 262 K and 293 K. The green waveform 

signal (t_r1) is the temperature of room 1. The blue waveform signal (t_r2) is the temperature of room 2. The purple 

waveform signal (t_r3) is the temperature of room 3. At the bottom of Figure 3, digital signals – heater_switch and 

interrupts (irq0-irq3) from temperature sensors are displayed. 

 

After booting the Linux OS (approx. 30s) the control SW gets started. The heater (heater_switch) gets turned 

on as the temperature in room one (t_r1) is below the minimum temperature of 292 K. It can be seen how the 

temperature slowly increases in all rooms. When the temperature is above the maximum threshold of 294.15 K the 

heater gets turned off. As a consequence, the room temperatures start to decrease. The sensors have been pro-

grammed to generate an interrupt whenever the temperature is above or below a threshold value (stored in register). 

We could see the assertion was satisfied throughout the simulation. However, if we decreased the delay(...) from 1 

ms to a smaller value, the assertion was always violated. This is expected and in accordance with the specifications. 

They require that the heater_switch should be turned off within 1 ms after the threshold temperature is crossed. The 

reason for 1 ms is because of the inherent delays due to reading and writing of registers in different connected 

devices, and can be summarized as follows:  

• the temperature sensor senses the temperature, 

• the sensed temperature is written into the register, 

• SW reads the temperature from the ARM processor, 

• SW checks whether the sensed temperature value is above the threshold value, 

• and writing the heater switch control register depending on the comparison result. 

1. auto heater_off = (t_r1 > t_threshhold) ->* (true | delay(1_SC_MS) | (heater_sw==false)); 

2. heater_off.default_sampling(1_SC_MS); 

Figure 5: Simulation results running the temperature control SW 



 

 

 

Hence, using the proposed intuitive SystemC assertions library, it is possible to check the timing of complex 

behaviors of the heterogeneous systems, e.g., digital, analog, and SW behavior. 

VI. CONCLUSIONS 

In this paper, we proposed a SystemC assertions library for heterogeneous systems. The library comprises of an 

intuitive and user-friendly API and offers full compatibility with SystemC, TLM, and SystemC/AMS. As a result, 

the library supports specification of complex interactions, necessary to represent complex AMS behavior of a Sys-

tem. The SystemC assertions library prototype was used to verify the industrial model using ARM Fast Models, a 

temperature control system SW, environment models, temperature sensors, and assertions. The library is still a 

work-in-progress with a focus on building an easy-to-use assertion language within SystemC. Currently, it only 

supports a subset of SVA operators as a proof of concept. Next, the goal is to support all SVA features and exten-

sions. 
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