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Heterogeneous System on Chip

• Single IC

• Feature rich

Design and verification of SOCs in timely manner?

• High performance

• Efficient
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Virtual Prototypes

SOC Development

Virtual Prototype Development

SW Development

Communication

Abstract SW models of HW

HW/SW co-design
Golden reference
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SystemC/ AMS
Functional correctness?

Upto 12 months saved1

1. https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/virtual-prototyping-soc-design.pdf

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/virtual-prototyping-soc-design.pdf


November 14, 2022  |  Slide
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Testbench

Modern VP-based 
Verification Environment

Poor quality Testsuite and VP
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AMS VP Verification – Challenge
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Testbench

Modern VP-based 
Verification Environment

Availability of system-level 

assertions library

• Expressiveness to 

represent complexity

• Compatibility to 

SystemC/AMS and TLM

• Capturing complex 

interaction, e.g., analog –

digital 

Practical system-level assertions library!

Big problem!
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Contribution: System-level Assertions Library

• System-level assertions library for heterogeneous systems
• SystemC/AMS + TLM

• Follows SystemVerilog Assertions (SVA) closely

• Application Programming Interface
• Intuitive

• User-friendly

• Expressive

• Complex behaviors
• Analog-to-digital

• Digital-to-analog …

• Software/Hardware interactions

• Industrial Case Studies
• ARM V8 based CPU using ARM Fast Models

• Temperature control system
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Outcome: High-quality verified DUV
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• SystemVerilog Assertions (SVA)

• Operators (arithmetic, relational, implication ...)

• Implication operator

▪ Pre-conditions (antecedent)

▪ Post-conditions (consequent)

• Mainly for digital systems!

9

Verification 
Directives

Property 
Declarations

Sequential 
Regular 

Expressions

Boolean 
Expressions

Used to build

Used to 
build

Used to build

assert property (@posedge clock) req |-> gnt ##1 (done && !error)

Building blocks

SystemVerilog Assertions Standard
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System-level Assertions Library - Architecture

C++ Assertion Specification

Intermediate Representation 
(Assertion Objects)

Generation

Post-generation Analyses

Spawn SC_THREADS

Setup Sampling Times

Assertions Debugger

Abstract Syntax Tree

Visitor Pattern Traversal

Layered Architecture

Verification Layer

Property Layer

Sequence Layer

Boolean Layer
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• Required behavior

• b is true 2 cycles after a is true

• SystemVerilog assertion

• System-level assertions library

Assertion Example
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sequence a_b;

@ (posedge clk) 

a ##2 b;

endsequence

assert property (a_b);

1. sequence a_b = a | delay(2) | b;

2. property example_prop = a_b;

3. example_prop.default_sampling(clk.posedge_event());

4. ASSERT_PROPERTY (example_prop);
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Boolean Layer and Lambda Functions

1. expr<std::function<int(void)>> lambda { []() {

2. return calc_average();

3. } };

4. auto expr_lambda = lambda < 3.0;

5. ASSERT_PROPERTY (expr_lambda);

• Boolean layer

• Describes the atomic behavior of signals

• Lambda functions are supported

• Define complex functionality inside an assertion

Operator Name

+= -= /= *= &= |= Binary assignment operators

< <= > >= Binary relational operators

+ - ∗ = Binary arithmetic operators

&& || == != Binary logical operators

+ - ! ++ – Unary operators

Supported boolean operators
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Sequence Layer and More …

• Sequence layer

• Builds on top of boolean layer

• Specifies temporal relationship between boolean expressions

• Support for delay () and repeat () 

1. // delay (value) and repeat (value)

2. sequence seqr1 = expr_a | delay (3) | expr_b | repeat (2)

3. //repeat (min_value, max_value)

4. sequence seqr2 = expr_a | delay (2,3) | expr_b | repeat (1,3)

Operator Description

delay
Specifies delay from current 

sampling point until the next

and Sequence and operation

or Sequence or operation

repeat Repetition operator

| Sequence continue operator

Supported sequence operators
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Property Layer and Implications

• Property layer

• General behaviors to be specified

• An implication built up from several sequences

antecedent - > ∗ consequent

where - > ∗ is overlapping implication operator

1. expr expr1 = a_int < 42;

2. sequence expr2 = true | delay(1,2) | expr_a + expr_b;

3. property non_overlap = expr1 ->* expr2;

4. ASSERT_PROPERTY (non_overlap);

Not supported –

non-overlapping 

assertion!*

* One can use delay(…) operator
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Experimental Evaluation – Case Study
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• Temperature control system
• Software + digital hardware + analog

• SystemC/AMS + TLM
• Time dataflow model

• Electrical linear network

• An ARM V8 based CPU using ARM Fast 

Models – Linux OS + SW

• 4 ADT7420 temperature sensors – discrete 

event model

• AMBA bus to connect temperature sensors 

and ARM processor

• An environment model (Thermal_Network)

• A heater model
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• Booting a Linux operating system on the ARM processor,

• A control SW is executed on top of Linux. The control SW continuously  

measures (monitors) the temperature sensor output,

• If the SW detects that the temperature value falls below a programmed threshold 

value, it switches the heater to ON state,

• Otherwise, when the temperature exceeds a certain programmed threshold, the 

heater is switched to OFF state

Experimental Evaluation – Scenario

When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the

threshold t_threshold (SW-controlled TLM register value), the heater has

to be switched off (heater_sw) within 1 ms.

Assertion description
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Experimental Evaluation – Scenario to Assertion

When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the

threshold t_threshold (SW-controlled TLM register value), the heater has

to be switched off (heater_sw) within 1 ms.

Assertion description

1. auto heater_off = (t_r1 > t_threshhold) ->* (true | delay(1_SC_MS) | (heater_sw==false));

2. heater_off.default_sampling(1_SC_MS);
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Experimental Evaluation – Simulation Results

292K

294.15K
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Conclusion

• System-level assertions library for heterogeneous systems

• Application Programming Interface

• Complex behaviors

• Software/Hardware interactions

• Industrial Case Studies
• ARM V8 based CPU using ARM Fast Models

• Temperature control system
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Outcome: High-quality verified DUV
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