
v

A Cross-domain Heterogeneous ABV-Library for
Mixed-signal Virtual Prototypes in SystemC/AMS

Muhammad Hassan1 (muhammad.hassan@dfki.de)

Thilo Vörtler2, Karsten Einwich2

Rolf Drechsler1,3

Daniel Große1,4

1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2COSEDA Technologies GmbH, Dresden, Germany

3Institute of Computer Science, University of Bremen, Bremen, Germany

4Institute of Complex Systems, Johannes Kepler University, Linz, Germany

16ME0117

November 14, 2022 | Slide

Agenda

• Motivation

• Challenges

• Contribution

• Conclusion and outlook

2

November 14, 2022 | Slide

Processors

Accelerators

Memories

WiFi

Sensors

4G/5G

Smart Devices

Heterogeneous systems
Analog

Software

3

+ Digital

November 14, 2022 | Slide

Heterogeneous System on Chip

• Single IC

• Feature rich

Design and verification of SOCs in timely manner?

• High performance

• Efficient

4

November 14, 2022 | Slide

Virtual Prototypes

SOC Development

Virtual Prototype Development

SW Development

Communication

Abstract SW models of HW

HW/SW co-design
Golden reference

5

SystemC/ AMS
Functional correctness?

Upto 12 months saved1

1. https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/virtual-prototyping-soc-design.pdf

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/virtual-prototyping-soc-design.pdf

November 14, 2022 | Slide

Modern VP-based Verification Environment

VP Testsuite
Assertions/

Checkers
DUVTe

xt
u

al

Sp
ec

if
ic

at
io

n
s

Constraints
(which

stimuli are
valid?)

Reference

Coverage
(measures
verification
progress)

6

Testbench

Modern VP-based
Verification Environment

Poor quality Testsuite and VP

November 14, 2022 | Slide

AMS VP Verification – Challenge

VP Testsuite
Assertions/

Checkers
DUVTe

xt
u

al

Sp
ec

if
ic

at
io

n
s

Constraints
(which

stimuli are
valid?)

Reference

Coverage
(measures
verification
progress)

7

Testbench

Modern VP-based
Verification Environment

Availability of system-level

assertions library

• Expressiveness to

represent complexity

• Compatibility to

SystemC/AMS and TLM

• Capturing complex

interaction, e.g., analog –

digital

Practical system-level assertions library!

Big problem!

November 14, 2022 | Slide

Contribution: System-level Assertions Library

• System-level assertions library for heterogeneous systems
• SystemC/AMS + TLM

• Follows SystemVerilog Assertions (SVA) closely

• Application Programming Interface
• Intuitive

• User-friendly

• Expressive

• Complex behaviors
• Analog-to-digital

• Digital-to-analog …

• Software/Hardware interactions

• Industrial Case Studies
• ARM V8 based CPU using ARM Fast Models

• Temperature control system

8

Outcome: High-quality verified DUV

November 14, 2022 | Slide

• SystemVerilog Assertions (SVA)

• Operators (arithmetic, relational, implication ...)

• Implication operator

▪ Pre-conditions (antecedent)

▪ Post-conditions (consequent)

• Mainly for digital systems!

9

Verification
Directives

Property
Declarations

Sequential
Regular

Expressions

Boolean
Expressions

Used to build

Used to
build

Used to build

assert property (@posedge clock) req |-> gnt ##1 (done && !error)

Building blocks

SystemVerilog Assertions Standard

November 14, 2022 | Slide 10

System-level Assertions Library - Architecture

C++ Assertion Specification

Intermediate Representation
(Assertion Objects)

Generation

Post-generation Analyses

Spawn SC_THREADS

Setup Sampling Times

Assertions Debugger

Abstract Syntax Tree

Visitor Pattern Traversal

Layered Architecture

Verification Layer

Property Layer

Sequence Layer

Boolean Layer

November 14, 2022 | Slide

• Required behavior

• b is true 2 cycles after a is true

• SystemVerilog assertion

• System-level assertions library

Assertion Example

11

sequence a_b;

@ (posedge clk)

a ##2 b;

endsequence

assert property (a_b);

1. sequence a_b = a | delay(2) | b;

2. property example_prop = a_b;

3. example_prop.default_sampling(clk.posedge_event());

4. ASSERT_PROPERTY (example_prop);

November 14, 2022 | Slide 12

Boolean Layer and Lambda Functions

1. expr<std::function<int(void)>> lambda { []() {

2. return calc_average();

3. } };

4. auto expr_lambda = lambda < 3.0;

5. ASSERT_PROPERTY (expr_lambda);

• Boolean layer

• Describes the atomic behavior of signals

• Lambda functions are supported

• Define complex functionality inside an assertion

Operator Name

+= -= /= *= &= |= Binary assignment operators

< <= > >= Binary relational operators

+ - ∗ = Binary arithmetic operators

&& || == != Binary logical operators

+ - ! ++ – Unary operators

Supported boolean operators

November 14, 2022 | Slide 13

Sequence Layer and More …

• Sequence layer

• Builds on top of boolean layer

• Specifies temporal relationship between boolean expressions

• Support for delay () and repeat ()

1. // delay (value) and repeat (value)

2. sequence seqr1 = expr_a | delay (3) | expr_b | repeat (2)

3. //repeat (min_value, max_value)

4. sequence seqr2 = expr_a | delay (2,3) | expr_b | repeat (1,3)

Operator Description

delay
Specifies delay from current

sampling point until the next

and Sequence and operation

or Sequence or operation

repeat Repetition operator

| Sequence continue operator

Supported sequence operators

November 14, 2022 | Slide 14

Property Layer and Implications

• Property layer

• General behaviors to be specified

• An implication built up from several sequences

antecedent - > ∗ consequent

where - > ∗ is overlapping implication operator

1. expr expr1 = a_int < 42;

2. sequence expr2 = true | delay(1,2) | expr_a + expr_b;

3. property non_overlap = expr1 ->* expr2;

4. ASSERT_PROPERTY (non_overlap);

Not supported –

non-overlapping

assertion!*

* One can use delay(…) operator

November 14, 2022 | Slide

Experimental Evaluation – Case Study

15

• Temperature control system
• Software + digital hardware + analog

• SystemC/AMS + TLM
• Time dataflow model

• Electrical linear network

• An ARM V8 based CPU using ARM Fast

Models – Linux OS + SW

• 4 ADT7420 temperature sensors – discrete

event model

• AMBA bus to connect temperature sensors

and ARM processor

• An environment model (Thermal_Network)

• A heater model

November 14, 2022 | Slide 16

• Booting a Linux operating system on the ARM processor,

• A control SW is executed on top of Linux. The control SW continuously

measures (monitors) the temperature sensor output,

• If the SW detects that the temperature value falls below a programmed threshold

value, it switches the heater to ON state,

• Otherwise, when the temperature exceeds a certain programmed threshold, the

heater is switched to OFF state

Experimental Evaluation – Scenario

When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the

threshold t_threshold (SW-controlled TLM register value), the heater has

to be switched off (heater_sw) within 1 ms.

Assertion description

November 14, 2022 | Slide 17

Experimental Evaluation – Scenario to Assertion

When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the

threshold t_threshold (SW-controlled TLM register value), the heater has

to be switched off (heater_sw) within 1 ms.

Assertion description

1. auto heater_off = (t_r1 > t_threshhold) ->* (true | delay(1_SC_MS) | (heater_sw==false));

2. heater_off.default_sampling(1_SC_MS);

November 14, 2022 | Slide 18

Experimental Evaluation – Simulation Results

292K

294.15K

November 14, 2022 | Slide

Conclusion

• System-level assertions library for heterogeneous systems

• Application Programming Interface

• Complex behaviors

• Software/Hardware interactions

• Industrial Case Studies
• ARM V8 based CPU using ARM Fast Models

• Temperature control system

19

Outcome: High-quality verified DUV

v

A Cross-domain Heterogeneous ABV-Library for
Mixed-signal Virtual Prototypes in SystemC/AMS

Muhammad Hassan1 (muhammad.hassan@dfki.de)

Thilo Vörtler2, Karsten Einwich2

Rolf Drechsler1,3

Daniel Große1,4

1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2COSEDA Technologies GmbH, Dresden, Germany

3Institute of Computer Science, University of Bremen, Bremen, Germany

4Institute of Complex Systems, Johannes Kepler University, Linz, Germany

16ME0117

