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Abstract—Along the line of increasing amount of Software that amount of memories increase. On the verification 

side most of these memories need to be peeked and poked into. The Universal Verification Methodology (UVM) 

provides for this purpose a class called uvm_mem which can be used for this. Within NXP a framework called “NXP 

memory driver API” was created that leverages the UVM infrastructure to load e.g. an image into the memories of a 

SoC. As today’s SoC grow in complexity, the verification of those SoCs is moving away from SoC only verification to 

an hierarchical approach. The hierarchical verification allows to manage the complexity and is also better aligned to 

the overall development process. This hierarchical verification imposes on the “NXP memory driver API” 

infrastructure to support this style as well. Here, the UVM infrastructure shows weaknesses for which the paper will 

show work a rounds. The paper will also show how to use such infrastructure to speed up the bring up of emulating 

the design under test. 

(Style: Abstract) 

Keywords—UVM; memory; verification; TLM2; GP; emulation 

INTRODUCTION 

The increasing complexity of today's SoC include not only Hardware, but also Software. With this increase the 

amount of memory for the various cores on the SoC also increase. Shrinking geometries along with safety 

requirements enforce the implementation of ECC on the memories as well as bit line reordering. As a result, 

backdoor loading of memories is no straight forward implementation anymore. Beside the need to improve the 

reuse of the complex memory backdoor loading drivers, the simulation performance becomes a bottleneck. The 

same effect can be seen on the design side, as the construction of these complex SoCs from simple blocks is difficult 

to be handled. Thus the design is using subsystems to assemble complex SoCs. Verification along the subsystem 

approach, does also increase the simulation performance, but imposes additional effort to create these additional 

testbenches. Therefore, it is important to build the testbenches in a most efficient way to allow as much code to be 

reused at the next level. Another approach to address the simulation performance is to move the design under 

verification into an emulation system. In the emulation system the loading of the memories is the first task on the 

infrastructure side after the design was compiled for the emulator. Here again the best practice is to reuse the 

existing loading infrastructure on the simulation environment to save setup time on emulation side. 

USE CASE SCENARIO 

To be able to understand the details, the use cases need to be described. The uses cases are also important to 

understand the disconnect and the limitations between the current implementation and the one documented in this 

paper. The use cases contain two cases which show up when looking at the distinct types of subsystems to build 
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SoCs. As an example for the use case the NXP device i.MX93x is used to showcase the cases. Figure 1 shows the 

block diagram of such device. 

The first type of  use case is the type of subsystems that contain a core, or more general expressed a bus master, 

as well as one or more memories. Figure 2 is an example of such subsystem from the i.MX93x block diagram. This 

block contains an Arm Cortex-M33 core along with 256 kB TCM RAM with ECC. 

The second type of subsystems is defined to contain one or more memories but no bus master. This case is 

shown in the figure below. This memory subsystem contains 640kB OCRAM with ECC. 

 

Out of these subsystems, SoCs can be assembled and the described infrastructure allows to create the required 

infrastructure therefore.  

Figure 3. Subsystem with memory 

Figure 1. i.MX 93x Block Diagram [1] 

Figure 2. Bus master with memory subsystem 
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UVM MEMORIES 

Basics 

One of the big advantages of UVM is that the internet can be used to query for questions on how to solve   

verification problems in UVM. In most areas, this provides plenty of hits, but especially when it comes to the 

uvm_mem usage, the results are rather thin. This observation was another motivation to create this paper. The 

uvm_mem is an extension of the uvm_object, therefore it is not a UVM component, and it will not be phased 

like a component. This means that the uvm_mem does not have the standard methods like e.g. build, connect. The 

closest class in the UVM framework to the uvm_mem is the uvm_reg class, which is used to model design registers 

in the testbench. Like the uvm_reg the uvm_mem support front door and back door access mechanism to provide 

redundant paths to the register and memory implementation and verify the correctness of the decoding and access 

path, as well as increased performance after the physical access paths have been verified. In this paper we 

concentrate on the backdoor function as this is used to load e.g. a compiled executable into the memory. The front 

door to the memories in this paper is done via C code running on an embedded core or via a special sequence that 

executes the C code on the workstation and leverages a bus functional model to access the memory via the front 

door.  

There is some reference code which shows a basic example of a standard UVM infrastructure setup for  

uvm_mem. A register block class root_reg_block is defined. It represents a design hierarchy which contains 

an address map uvm_reg_map accessible via a specific physical interface and a memory modelized with the 

memory abstraction base class uvm_mem accessible via the address map. First the m_root_mem_map address 

map is created with the create_map method of the uvm_reg_block base class. The create_map method 

allows to configure the base address of the map which will be used as an offset for all the registers, memories and 

sub-blocks within the map, the byte width of the bus for which this map is used and the endianness. Then a new 

instance of uvm_mem base class named m_root_mem  is instantiated. The size determines the number of 

memory locations, n_bits  specifies the number of bits in each memory location and access  sets the access 

policy for the memory. The parent block m_root_mem for the uvm_mem is then configured and the backdoor is 

created. As last step the newly created memory m_root_mem is added to the address map m_root_mem_map 

at a specific offset. 

 

class root_reg_block extends uvm_reg_block; 

    uvm_reg_map   m_root_mem_map; 

    uvm_component m_parent; 

    uvm_mem  m_root_mem; 

    function new (string name = "root_reg_block", 

                 int has_coverage = UVM_NO_COVERAGE); 

        super.new (name, build_coverage(UVM_CVR_ADDR_MAP)); 

    endfunction : new 

    function void build (); 

        m_root_mem_map = create_map (.name("m_root_mem_map"), 

            .base_addr(0), 

            .n_bytes(4), 

            .endian(UVM_LITTLE_ENDIAN)); 
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        begin : M_ROOT_MEM_BUILD 

            m_root_mem = new (.name({get_name(),".m_root_mem"}), 

                .size((128*1024)/(32/8)), 

                .n_bits(32), 

                .access = "RW"); 

            m_root_mem.configure (root_reg_block, ""); 

        end : M_ROOT_MEM_BUILD 

        begin : M_ROOT_MEM_MAP 

            m_root_mem_map.add_mem (.mem(m_root_mem), 

                .offset('h42000000));        

        end : M_ROOT_MEM_MAP 

    endfunction : build 

endclass : root_reg_block 

 

In the UVM top_env the register block class root_reg_block is used to create a design hierarchy in which 

the m_root_reg_block contains 2 sub-blocks m_a_reg_block and m_b_reg_block , derived from 

the same class and mapped to different memory addresses of  the  m_root_reg_block uvm_reg_map. The 

register blocks are created using the build construct described before and then added to the memory map of the 

m_root_reg_block. The m_a_reg_block is added through the add_mem at the offset 

32'h4200_0000. A memory can be added to multiple address map if it is accessible by different interfaces, 

however the address maps to which is added need to have the same parent block of the memory. Instead the memory 

map of the block   m_b_reg_block is set through add_submap method as a submap of m_b_reg_block 

at address 32'h0042_0000. As last step the register blocks are locked to allow the computation of the final 

memory map   

class top_env extends uvm_env; 

    root_reg_block  m_root_reg_block; 

    root_reg_block  m_a_reg_block; 

    root_reg_block  m_b_reg_block; 

    virtual function void build_phase (uvm_phase phase); 

     begin: ROOT_REG_MODEL_BUILD 

            m_root_reg_block = new("m_root_reg_block"); 

       m_root_reg_block.m_parent = this; 

          m_root_reg_block.build(); 

     end : ROOT_REG_MODEL_BUILD 

     begin: A_REG_MODEL_BUILD 

          m_a_reg_block = new("m_a_reg_block"); 

       m_a_reg_block.m_parent = this; 
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          m_a_reg_block.build(); 

      end : A_REG_MODEL_BUILD 

      begin: B_REG_MODEL_BUILD 

          m_b_reg_block = new("m_b_reg_block"); 

       m_b_reg_block.m_parent = this; 

          m_b_reg_block.build(); 

      end : B_REG_MODEL_BUILD 

    endfunction : build_phase 

    

    function void connect_phase (uvm_phase phase); 

     begin : HDL_ROOT 

       m_root_reg_block.set_hdl_path_root("testbench.top"); 

     end : HDL_ROOT 

        begin : CONNECT_TOP_A_REG_MODEL 

       m_a_reg_block.configure(.parent(m_root_reg_block), 

                          .hdl_path("a_wrapper")); 

       m_a_reg_block.m_root_mem_map.add_mem(.offset(32'h4200_0000)); 

      end : CONNECT_TOP_A_REG_MODEL  

 

         begin : CONNECT_TOP_B_REG_MODEL 

        m_b_reg_block.configure(.parent(m_root_reg_block), 

                           .hdl_path("b_wrapper")); 

        m_b_reg_block.m_root_mem_map.add_submap( 

                           m_a_reg_block.m_root_mem_map, 

                                   32'h0042_0000); 

      end : CONNECT_TOP_B_REG_MODEL 

    endfunction : connect_phase 

 

    virtual function void end_of_elaboration_phase (uvm_phase phase); 

        begin: A_REG_MODEL_LOCK 

       m_a_reg_block.lock_model(); 

     end: A_REG_MODEL_LOCK 

        begin: B_REG_MODEL_LOCK 

       m_b_reg_block.lock_model(); 

      end: B_REG_MODEL_LOCK 
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        begin: ROOT_REG_MODEL_LOCK 

       m_root_reg_block.lock_model(); 

      end: ROOT_REG_MODEL_LOCK 

    endfunction : end_of_elaboration_phase 

endclass : top_env 

Based on the topology and complexity of the design and of the physical interfaces, one or more memories could be 

added to the address map, and a register block could contain one or more address maps. 

Limitiations 

As outlined in [2], the UVM memory infrastructure is limited as it has the model in mind that there is one design 

hierarchy with one viewpoint into the  system. This shows up as soon as a memory is added to two maps that belong 

to different blocks to start with. When you do this, the following code will error out 

 

 Same if you want to add a map multiple time, an error will be flagged by the code below 

 

or 

 

In the regression we run an UVM warning will also make the testcase fail by the code below 

 

The above code sections are just a few examples of error and warnings you can get when trying to use the 

standard UVM code for your use case. 

NXP MEMORY DRIVER API 

Architecture 

The NXP memory driver API leverages the UVM memory infrastructure by providing a defined Application 

Programming Interface (API) to the stimulus as well as defining how a memory driver needs to be implemented. 

The interface to the stimulus is called frontend API in this paper. The memory drivers are implemented in the 
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backend infrastructure of NXP memory driver API. Figure 4 gives an overview of the architecture. The figure 

shows the division into a frontend and backend part of the infrastructure. Along with the division, there are two 

APIs defined. The two parts are then connected via a Transaction Level Model 2 (TLM2) generic payload (GP). 

The TLM2 GP connection between the frontend and the backend was chosen to support connection into system 

level models as well as a potential hook to emulation systems. Additional information that need to be passed is 

carried via a GP extension.  

The front-end class structure with its APIs is shown in Figure 5. The figure shows two parts. The first API is 

provided with the mem_api_base class. This API is used for UVM sequences. On the right side of the picture, 

an extended uvm_mem infrastructure is shown that captures the connection between the uvm_mem and the 

extended uvm_reg_backdoor. Further the TLM2 connection is shown in form of using the 

m_nb_initiator_socket as being part of the GP sequencer.   

Figure 4. Memory Infrastructure Overview 
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The connection between the mem_api_base and the nxp_tlm2_mem is that the nxp_tlm2_mem is registered 

to the uvm_map as defined by UVM. Along with the UVM definition, the uvm_map is registered with an 

uvm_reg_block. This uvm_reg_block is passed to the mem_api_base. The mem_spi_base class is 

then using the UVM methods to determine which uvm_mem to use for a given read or write transaction provided 

via an API call. 

The TLM2 initiator socket is made available using the method create_backdoor() on top of the basic 

UVM memory setup code.  

Similar to the frontend class structure, Figure 6 shows the backend UML class diagram. The connection to the 

frontend is shown in the figure as m_nb_target_socket. The figure shows two variants of memory driver that 

can be used. One is mem_api_driver which is typically used for design internal memories. This memory driver 

uses a behavioral memory model which is provided typically from the memory compiler. The 

nxp_mem_gp_driver is the second option to create a memory driver. This second variant provides already a 

sparse memory array and is typically used for testbench memories and just needs a front-end access API state 

machine, like e.g. an AHB interface.  

 

Figure 5. Frontend UML 
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As mentioned earlier, the frontend is connected to the backend infrastructure using a TLM2 socket. This connection 

is done in the environment class in the connect phase as shown in the code below 

 
function void my_env::connect_phase (uvm_phase phase); 

    m_a_reg_block.m_a_drv_mem.m_mem_sequencer.m_nb_initiator_socket.connect 

         (m_a_mem_drv.m_nb_target_socket);  

 

In addition to the connect function, the convenience function set_backdoor() as shown in Figure 5, needs to 

be called in the register model build method to allow the connection to the backend classes via TLM2. This method 

is made available in the nxp_tlm2_mem which is an extension of the uvm_mem. 
 

    begin : M_B_DRV_MEM_BUILD 

        m_b_drv_mem = new (.name({get_name(),".m_b_drv_mem"}), 

            .size((256*1024)/(32/8)), 

            .n_bits(32), 

            .parent(m_parent)); 

        m_b_drv_mem.configure (root_reg_block, ""); 

        m_b_drv_mem.set_backdoor (m_b_drv_mem.create_backdoor()); 

    end : M_B_DRV_MEM_BUILD   

Figure 6. Backend UML 
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To overcome the issues outlined in the Limitiations section for our use cases, the classes shown in Error! 

Reference source not found. have been added. 

This means that instead of creating an e.g. uvm_reg_map, an nxp_reg_map needs to be used. These classes 

provide on top of modified UVM functions new functions. Main objective of the updates are to overcome the 

single parent concept of the standard UVM implementation. The new functions are divided into functions that 

need to be called in the user code, and other functions that are used internally. One of the new user code functions 

is the set_root_block()method. As outlined in the Basics sections, there is a method in reg_block called 

build() that creates the reg_map. In this method the set_root_block() method needs to be called first. 

The bold lines show the additional lines that need to be added on top of the basic UVM code 

 
function void my_nxp_reg_block::build (); 

    set_root_block (this); 

    m_top_b_mem_map = create_map (.name("m_top_b_mem_map"), 

        .base_addr(0), 

        .n_bytes(4), 

        .endian(UVM_LITTLE_ENDIAN)); 

 

The second new user function is the nxp_reg_block::Xinit_addess_mapsX(), this function needs to 

be called to complete the address map calculation. This function is called in the 

end_of_elaboration_phase() function in the UVM environment.  

 
function void my_env::end_of_elaboration_phase (uvm_phase phase); 

    begin: A_REG_MODEL_LOCK 

        m_a_reg_block.lock_model(); 

   m_a_reg_block.Xinit_address_mapsX(); 

    end: A_REG_MODEL_LOCK 

 

The new internal functions are nxp_reg_map::set_parent(), nxp_reg_map::set_root_map() 

and nxp_reg_map::get_parent_map(). Methods that have updated functions are 

nxp_reg_map::Xinit_address_mapX()and nxp_reg_map::set_submap_offset(). 

Figure 7. Extended UVM classes 
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The function set_submap_offset() adds the submap to the m_reg_maps array and calls then the base 

set_submap_offset() function. This is done to overcome the checks in the UVM base code that block the 

use case we have by using the UVM recommended function add_submap(). This means further that instead of 

calling the method add_submap() in our code, we use set_submap_offset() method instead to allow 

adding a submap to one or more maps. An example is shown below 

 
     m_b_reg_block.m_top_b_mem_map.set_submap_offset( 

  m_a_reg_block.m_top_a_mem_map, 32'h0A00_0000); 

 

The method Xinit_address_mapX()calls the base Xinit_address_mapX()function and sets the parent 

of the submaps captured in the m_reg_maps array to the component that passed via the set_parent() 

method. 
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Hierarchical Simulation  

As detailed in the introduction, the approach taken to assemble complex SoCs, is to create subsystems first. 

These subsystems contain cores as well as memories. Other subsystems contain only memory, others only cores. 

For subsystems with only a core, a memory is required in the testbench. For subsystems with only a memory, a 

core in the testbench is required. When the subsystems get assembled a memory of a memory only subsystem, will 

become visible to a subsystem with a core. The same memory may become visible to a core in another subsystem 

at another address. A memory that was placed inside the testbench of a subsystem will be replaced by a real memory 

on the SoC. All these cases need to be taken care of by the infrastructure and the implementation of them will be 

outlined in the following sections.  

A testbench for a subsystem with a core and a memory like shown in Figure 2 is shown in Figure 8. To simplify 

the pictures, shortened names for the different classes are used. The figure shows the UVM recommended structure 

to place all the infrastructure inside an extension of the uvm_env class. Inside this environment, the  

mem_api_base (yellow box) is instantiated as the viewpoint of the core into the memory map. The actual 

memory map is passed to the class in form of the reg_block (dotted line box) which got the memory information 

passed in form of the reg_map (green boxes). The reg_map has then the references to all UVM memories (blue 

boxes). The connection to the actual memory driver from the UVM memories was described in the Architecture 

section. Figure 8 also shows that there can be multiple reg_maps to support with multiple viewpoints into the 

memory map, e.g. to support multiple cores in a subsystem.  

Figure 8. Core with memory testbench setup 
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The second case is the subsystem that does not have a core. The testbench setup for this scenario is shown in 

Figure 9. In contrast to the system with the core, the NXP memory driver API class is missing. Only one or more 

reg_maps and the corresponding UVM memories are captured in the environment. 

Figure 9. Memory only testbench setup 
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At the SoC, these subsystems can then be combined in the SoC environment by instantiating the corresponding 

subsystem environment in the SoC environment and adding additional memory map definitions into the SoC 

environment.  

Figure 10 depicts the assembly of an SoC out of the env_a and enb_b that have been described earlier. The 

memories of the env_b can be mad visible in env_a for the core in this subsystem. The figure shows two 

approaches to register the memories of env_b in the address map of the core of env_a. 

The first option is expressed with the solid arrow in the figure. In this case, the memory of env_b is registered 

in the map file of env_a. The code that would reside inside the env_c looks like 

function void env_c::connect_phase (uvm_phase phase); 

    … 

    m_env_a.m_reg_block.m_mem_map.add_mem( 

        m_env_b.m_reg_block.m_mem, 32'h20400000); 

 

When this option is used, the memory will be placed at 32'h20400000 in the map of env_a. 

The second option is expressed with the dotted arrow in the figure. In this case, the map of env_b is registered 

in the map file of env_a. The code that would reside inside the env_c looks like 

function void env_c::connect_phase (uvm_phase phase); 

    … 

    m_env_a.m_reg_block.m_mem_map.set_submap_offset ( 

        m_env_b.m_reg_block.m_map, 32'h0); 

 

Figure 10. SoC memory assembly 
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Using the map of env_b to get the memory added to the memory map of env_a, the memory will be placed 

into the memory map as defined in the map of env_b with the offset  32'h0. 

Emulation 

To increase efficiency and reduce development time, it is important to reuse memory loading infrastructure 

from simulation testbench to load memories on emulation too. Emulation memory models may be architected 

differently than simulation model and may implement different bit reordering scheme and memory repair bits. It is 

therefore important to make NXP memory driver API memory drivers parameterized for all these features to allow 

easy portability to emulation. 

It is also more efficient to load memory content as a single hex file on each memory cut one time rather than 

dynamically accessing and updating memory arrays in each memory cut multiple times as done in simulation. 

The NXP memory driver API memory drivers implement options to model design memories for memory cut 

internally. All dynamic accesses to these memory cuts are made to these internal memories when executing for 

emulation. Contents of each memory cut are then written out to a memory cut specific hex file at start of UVM’s 

‘main_phase’. These hex files can then be used for loading memory cuts on emulation mode. 

 

 

To increase efficiency and reduce development time, it is important to reuse memory loading infrastructure 

from simulation 

CONCLUSION 

Due to the limitations of the UVM register model several new classes had to be developed. As there are several 

vital class variables that are declared as local, the variable and the function had to be duplicated in the extended 

classes. Some of the functions that need to be called from the user code have been overloaded to cover the new 

functionality, however, it may have been better to rename them to make the overloaded behavior visible to the user. 

Figure 11. NXP memory driver API for emulation 
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Still, it was possible to cover the required use cases and the memory setup of subsystems can be reused at the 

next level with little effort. This makes the assembly of SoC testbench much faster with the additional benefit that 

the components that are reused have been tested at the subsystem.   
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