
uvm_mem – challenges of using UVM infrastructure
in a hierarchical verification

Joachim Geishauser, NXP Deutschand GmbH, Munich, Germany (joachim.geishauser@nxp.com)

Aditya Chopra, NXP Semiconductors India Pvt Ltd, Noida, India (aditya.chopra@nxp.com)

Stephan Ruettiger, NXP Deutschand GmbH, Munich, Germany (stephan.ruettiger@nxp.com)

Luca Rossi, NXP Semiconductors France, Mougins, France (luca.rossi@nxp.com)

Sanjay Kakasaniya, NXP USA INC, Austin, USA (sanjay.kakasaniya@nxp.com)

L.N. Zhang, NXP Qiangxin (Tianjin) IC Design Co., Ltd, Tianjin, China(lina.zhang1@nxp.com)

Agenda
• Use Cases

• UVM Memories
• Basics

• Limitations

• NXP memory driver API
• Architecture

• Hierarchical Simulation

• Emulation

• Conclusion

Use Case

Subsystems with Memory

Subsystems with Core

• SoC are build out of
subsystems

• SoC contains many
cores
• Every core can have

its own map

• SoC contains
multiple memories
• Memories are shared

UVM Memories
• The uvm_mem is an

extension of the
uvm_object,
therefore it is not a
UVM component,
and it will not be
phased like a
component.

• The closest class in
the UVM framework
to the uvm_mem is
the uvm_reg class.

UVM Memories: Basics
• Like the uvm_reg the uvm_mem support front door and back door access

• The uvm_reg_block base class can be used to represent a design
hierarchy which contains an address map uvm_reg_map and a memory
modelized with the memory abstraction base class uvm_mem accessible via
the address map.

• Based on the topology and complexity of the design and of the physical
interfaces, one or more memories could be added to the address map, and
a register block could contain one or more address maps.

UVM Memories: Basics (cont.)
• In the UVM top_env multiple instances of class uvm_reg_block can be

used to create a model representing the design hierarchy
• For example, a m_root_reg_block can contain 2 sub-blocks m_a_reg_block

and m_b_reg_block, derived from the same class and mapped to different
memory addresses of the m_root_reg_block in the uvm_reg_map.

• Through add_mem method, memory can be added to multiple address maps if it is
accessible by different interfaces, however the address maps to which it is added
need to have the same parent block of the memory.

• The register blocks need to be locked to allow the computation of the final
memory map.

UVM Memories: Limitations
• One uvm_reg_block supported for a uvm_reg_map

• A uvm_reg_map can only have one parent map

• A uvm_mem can only be in one uvm_reg_block

NXP memory driver API: Motivation
• Almost all NXP devices contain an embedded core which needs memory from

which SW will be executed.
• Every testbench need to load memory with content to verify the device.

• Safety, geometry and size requirements cause that the memory implementation
becomes not straight forward
• Loading memory cuts and calculate ECC need to be handled by infrastructure

• Due to SoC complexity, SoC assembly is done hierarchically
• Hierarchical structure needs to be supported.

• Devices have multiple cores, with different address maps associated.

• Verification spawns the whole space from system to gate level as well as
different engines
• Infrastructure need to support the usage of the same code along the 9 yards.

NXP memory driver API: Architecture
• Architecture is split into

frontend and backend.

• Frontend API available
for
• UVM sequences

• Verilog tasks

• C stimulus

• Connection to backend
uses TLM2
• To support SC and

emulation use cases

NXP memory driver API: Frontend View
• Address information is taken from
uvm_reg_block

• uvm_mem is used as mirror

• TLM2 socket is used to connect to
backend
• create_backdoor eases the

setup

begin : M_B_DRV_MEM_BUILD

m_b_drv_mem = new (.name({get_name(),".m_b_drv_mem"}),

.size((256*1024)/(32/8)),

.n_bits(32),

.parent(m_parent));

m_b_drv_mem.configure (root_reg_block, "");

m_b_drv_mem.set_backdoor (m_b_drv_mem.create_backdoor());

end : M_B_DRV_MEM_BUILD

NXP memory driver API: Backend View
• Two types of memory driver's base classes

are provided
• mem_api_driver is used for design

internal memories

• nxp_mem_gp_driver is used as a base
for testbench memories

• Connection to the frontend is done via
TLM2

function void my_env::connect_phase (uvm_phase phase);

m_a_reg_block.m_a_drv_mem.m_mem_sequencer.m_nb_initiator_socket.connect

(m_a_mem_drv.m_nb_target_socket);

NXP memory driver API: Building Blocks
top_env

<project>_env

uvm_env

stim_manager_base

<project>_vsqr

uvm_sequencer

<project>_reg_block

uvm_reg_block

<project>_config

uvm_object

nxp_reg_block

mem_api_base

<project>_reg_map

uvm_reg_map

nxp_reg_map

drv_mem

uvm_mem

nxp_tlm2_mem

If subsystem

contains a CPU

m_mem_api_cpu_name

NXP memory driver API: Overcome Limitations
• Multiple submap use case

• Map use in multiple uvm_reg_blocks

• To calculate the address map

function void my_nxp_reg_block::build ();

set_root_block (this);

m_top_b_mem_map = create_map (.name("m_top_b_mem_map"),

.base_addr(0),

.n_bytes(4),

.endian(UVM_LITTLE_ENDIAN));

function void my_env::end_of_elaboration_phase (uvm_phase phase);

begin: A_REG_MODEL_LOCK

m_a_reg_block.lock_model();

m_a_reg_block.Xinit_address_mapsX();

end: A_REG_MODEL_LOCK

m_b_reg_block.m_top_b_mem_map.set_submap_offset(

m_a_reg_block.m_top_a_mem_map, 32'h0A00_0000);

Hierarchical Simulation: CPU Example

env_a

• Environment with CPU provides Memory API

• uvm_reg_map provides view into subsystem,
multiple uvm_reg_map captures different
views

• Memory driver are provided with the subsystem
environment

begin : M33_SYS_TCM_MEM_MAP

m_env_a_mem_map.add_mem (.mem(m_sys_tcm_mem),

.offset('h20000000));

end : M33_SYS_TCM_MEM_MAP

begin: MEMORY_API_KEEP_BUILD

m_memory_api = new ("m_memory_api");

m_memory_api_sqr = new ("m_memory_api_sqr",

this);

m_memory_api_sqr.put_cpu_memory_api(

m_memory_api,

m_env_a_config.m_mem_api_cpu_name,

this);

end: MEMORY_API_KEEP_BUILD

uvm_reg_block

Hierarchical Simulation: Memory Example

• uvm_reg_map provides view into subsystem, multiple
uvm_reg_map captures different views

• Memory driver are provided with the subsystem
environment

env_b

begin : M_OCRAM_DRV_MEM_MAP

m_env_b_mem_map.add_mem (

.mem(m_ocram_drv_mem),

.offset('h20480000));

end : M_OCRAM_DRV_MEM_MAP

begin: M_OCRAM_DRV_ELAB

string hdl_path[$];

string cut_path[2];

string base_path;

m_env_b_reg_block.get_full_hdl_path(

hdl_path);

base_path = {hdl_path[0],".mtr_nocmix"};

cut_path = '{"ocram_mem0.mem","ocram_mem1.mem"};

for (int ii=0; ii < 2; ii++)

cut_path[ii] = {base_path,".",cut_path[ii]};

m_ocram_drv.set_mem_scope(cut_path);

end : M_OCRAM_DRV_ELAB

Hierarchical Simulation: Assembly View

m_env_a.m_env_a_reg_block.m_env_a_mem_map.add_mem(

m_env_b.m_env_b_reg_block.m_sys_tcm_drv_mem, 32'h20400000);

begin : ENV_A_MEMORY_API_HDL_ROOT

m_env_a.m_env_a_reg_block.configure(

.parent(m_reg_block),

.hdl_path(“env_a_wrapper.env_a_top"));

…

end : ENV_A_MEMORY_API_HDL_ROOT

Setup supports reuse of
• Same driver in multiple maps

• One map as multiple submaps

• Address info from subsystem to SoC

NXP memory driver API: Emulation

• Infrastructure Reuse from Simulation to Emulation
▪ Increases efficiency and reduces development time

• Parameterized memory driver API Memory Drivers
▪ Easy portability to emulation memory models
▪ Supports different bit reordering and memory repair

schemes in emulation models

• Models Internal Memories
▪ Internal memory models for each DUT memory cut
▪ Dynamic memory write operations to internal memories
▪ API to write hex files for each DUT memory cut executed

after all memory write operations
▪ Dumped hex files loaded on corresponding DUT memory

cuts

Internal
Memory Models

NXP memory API Memory Driver

Memory Access
API

Hex File Write
API

Memory Write
Operations

Memory Cut
Hex File

Memory Read
Operations

Write Hex Files for
emulation use

Conclusion
• Presented infrastructure addresses all requirements of the use case

• UVM limitations got addressed via extended UVM classes
• Overwritten UVM functions should have been renamed to make change visible

• Hierarchical assembly code captures level depended properties only
• Properties can be tested in a divide and conquer approach

• Assembly of testbench is accelerated

Questions?

Thank You for Attending this Presentation

