
An Efficient Methodology for Mutation-Coverage-
Collection of Formal-Property-Checking

Holger Busch

Infineon Technologies AG

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

27 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

37 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Mutation Coverage
• Goal: Safeguard verification quality

• Provide completeness metrics and sign-off criteria

• Measure verification progress

• Check whether function of each statement is verified

• Approach: Systematic fault insertion
• Instrument design: inject functional mutations + multiplexors

• Iteratively activate faults and collect detections by regression

• Detection: test case / property failure

EDA-Tools Supporting Mutation Coverage
• Quantify - Onespin

• Integrated in formal-property-checker
• Instrumentation of model, line-based
• Push-button

• Certitude - Synopsys
• Separate from verification tools
• Usable with any simulator or formal property checker
• Integration scripts required
• Configurable instrumentation of HDL-design

• Today’s topic: Integration of Onespin’s FPC with Certitude

Standard Certitude Flow

For each detection-run
Certitude selects
pair of fault – testcase:
high number of combinations!

Configuration of Design Instrumentation
• Code regions to be instrumented

• Fault Categories:
• Replacement of right-hand side of assignments

• Free-variable inputs, negation, operator replacement, operand swaps

• Replacement of Block Conditions
• Tied to true or false, negation

• Signal distortion
• Tied to 0 or 1, negation

Instrumentation Example

Instrumented RTL-Code
cpu_idle_ack_s <= '1' when ((cerfaultenable518to777(764) = '1') and false)

else '1' when ((cerfaultenable518to777(766) = '1') and not(boolean' ((((state /= run) and (pmcsrx_reqslp_s = "11")) and
(pmswcr1_iradis_i = '1')))))

else '1' when ((cerfaultenable518to777(768) = '1') and (((state /= run) and (pmcsrx_reqslp_s = "11")) or (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(769) = '1') and (((state /= run) or (pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(770) = '1') and (((state /= run) nand (pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(771) = '1') and (((state = run) and (pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(772) = '1') and (((state /= run) and (pmcsrx_reqslp_s /= "11")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(773) = '1') and (((state /= run) and (pmcsrx_reqslp_s = "00")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(774) = '1') and (((state /= run) and (pmcsrx_reqslp_s = "01")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(775) = '1') and (((state /= run) and (pmcsrx_reqslp_s = "10")) and (pmswcr1_iradis_i = '1')))
else '1' when ((cerfaultenable518to777(776) = '1') and (((state /= run) and (pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i /= '1')))
else cer_tbq_FreeSignalCopy_767_0_cpu_idle_ack_s when ((cerfaultenable518to777(767) = '1') and (((state /= run) and

(pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i = '1')))
else '1' when (((cerfaultenable518to777(764) = '0' and cerfaultenable518to777(765) = '0' and cerfaultenable518to777(766) = '0' and

cerfaultenable518to777(768) = '0' and cerfaultenable518to777(769) = '0' and cerfaultenable518to777(770) = '0' and
cerfaultenable518to777(771) = '0' and cerfaultenable518to777(772) = '0' and cerfaultenable518to777(773) = '0' and
cerfaultenable518to777(774) = '0' and cerfaultenable518to777(775) = '0' and cerfaultenable518to777(776) = '0' and

cerfaultenable518to777(767) = '0') and (((state /= run) and (pmcsrx_reqslp_s = "11")) and (pmswcr1_iradis_i = '1'))) or
(cerfaultenable518to777(765) = '1'))

else
cer_tbq_FreeSignalCopy_777_0_cpu_idle_ack_s when ((cerfaultenable518to777(777) = '1') and true)
else cpu_idle_ack_i;

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

1
0

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Formal Certitude Flow

Instrumentation
Reporting

Control
Detection

Preparation Steps
• User specifies code regions to be instrumented and properties

• Exclusion of pre-verified libraries, generated code, re-used components

• Automatic steps:
• Certitude configuration and invocation

• Instrumented RTL design loaded into Onespin

• Instrumented properties loaded

• Sanity-proofs with 0-fault assumption:
• Failing properties excluded

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

1
3

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

User Control
• Started by user with optional parameters for detection control

• Property subset to be used for qualification

• Target code regions with instrumented but not yet detected faults

• Generated default configuration file intermediately adjustable by user

• Limits for time, memory, parallelism

• Maximum number of iterations (default: unlimited)

• Verbosity

Automatic Iterative Procedure
• Execution of consecutive rounds:

• Selection of current property sub-set: ranking by run-times

• Adjustment of fault-enabling assumptions

• Qualification proofs

• Result evaluation

• Termination

• No undetected faults left

• All qualification properties proven or excluded by configured time-limit

• User-specified number of iterations reached

Fault-Enabling Assumption
• Specifies fault-set addressed in next qualification proofs

• Subset of original target faults not yet intermediately detected since start

1hot(fv) fv(i)=1,

ass(Pj) |- com(Pj)
ass(Pj) |- com(Pj)

Regular Property Pj: Property Pj with enabling of fault fi

Fault activation vector: only one fault enabled in each check

Formal flow: Selection of fault yielding failure by formal prover

Detection Proofs
• Automatic submission of proof jobs out of Onespin

• Evaluation of results:
• Proven properties:

• None of currently addressed faults detectable

• Remove from qualification property set

• Disproven properties:
• Collect detected faults and subtract from fault set

• Record proof times

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

1
8

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Objectives
• Maximization of detection speed

• Reduction of model / proof complexity

• Let fast-running properties detect faults first

• Avoid useless attempts

• Increase parallelism

• Focus on new detection goals, re-use previous results

• Minimization of overall resource consumption
• LSF-hosts heavily used by competing jobs

Prover Selection
• Prover groups in Onespin:

1. Search from arbitrary states
• Counterexample may be unreachable

• Hold-result valid in complete state space including unreachable part

2. Search from reset state
• Expensive or unfeasible if huge number of cycles required before assumption state

• Detection yielded from fail-result
• Reachable failure impossible for some properties proven by 1.

• Detection proofs of 1-properties are run with 1-provers

Focusing
• Specific code regions, function, and property subsets are related

• User can specify relations

• Local detection accelerates qualification:
• Additional or enhanced property targeted at specific uncovered code

• Minimum wait-time until feed-back whether enhancement sufficient

Model Trimming
• Problem:

• Instrumented model much more complex
• Complex properties potentially unusable

• Approach:
• Instrumented design: additional input vector for fault-enabling
• Re-compilation with Onespin-option for tying fault-enabling input-bits

• Procedure:
• Re-compilation for current fault-subset
• Percentage of detected faults automatically triggers model trimming

• Effect:
• Model continuously reduced with detection progress
• Advantageous for postponed long-runners!

Super-Parallelization
• Several independent qualification sessions with disjunct fault subsets

Merging Results
• Separate qualification sessions

1. Same Certitude instrumentation:
• Onespin-qualification results directly merged and imported into Certitude

2. Same design version, but different Certitude instrumentations
• Merged Certitude instrumentation

• Fault-mapping based on fault attributes

• Merging detections of mapped faults in Onespin and Certitude

Inheritance
• Change requests until tape-out

• Few design code affected

• New instrumentation

• New or modified formal properties

• Restart of qualification from scratch avoided
• Fault-mapping

• Tentative re-use of previous detections in directed-qualification procedure

• Only remaining undetected faults addressed by regular detection procedure

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

2
6

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Command Function Shell

cqm $props $incl $excl $qfn Prepare instrumentation Onespin-TCL-shell

cqd $faults $props Run detection rounds Onespin-TCL-shell

cqd $cert_db Run detection directed by previous Certitude database Onespin-TCL-shell

cqdp $n Start parallel qualification sessions Onespin-TCL-shell

cqa $new_props Augment qualification property set Onespin-TCL-shell

cqdm $qdirs Merge parallel subsessions from qualification directories Onespin-TCL-shell

mcq $cert_dbs Merge results from several Certitude databases Any TCL-shell

codvis Visualize Onespin detection status in Certitude HTML report Linux-command-shell

No Prerequisites
• Flow started in normal Onespin session with proven properties

• Few simple commands:

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

2
8

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

Summary
• Valuable structural completeness metrics for formal

• Fast detection progress

• Minimized complexity

• Automation: ease of use

• Status import into Certitude at any time

• Continuous improvements by wide experience

• Mutation coverage necessary, but not sufficient
• Deviations from specification not captured

Agenda
Introduction

Preparation Phase

Detection Phase

Performance Improvements

Usage

Summary

Questions

1

2

3

4

5

6

7

3
0

7 July 2022 Confidential - Copyright © Infineon Technologies AG 2022. All rights reserved.

