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Abstract   

The RISC-V ISA has been gaining momentum in the semiconductor community because of the 

design freedoms of the open specification. To date, the focus in the community has been on the 

development and verification of individual domain-specific processors and the software that runs 

on them. One of the use cases for those domain-specific processors is the instancing of multiple 

processors to create processing subsystems for AI/ML, audio processing and general-purpose 

digital signal processing. This subsystem level of processor integration poses new challenges for 

both hardware and software, not only with the individual RISC-V processors but also at the 

subsystem level.   

 

New challenges faced include the verification of custom features in the processors, development 

of the communication fabric for the multiple processors and software development on the 

processor subsystem.  There are also some existing challenges, specifically the verification of the 

base RISC-V processor.   

 

To accelerate the development of software, a virtual platform (software simulation) flow is used.  

This starts with just a single processor model, the same OVP model used for DV, instantiated in 

a SystemC environment for basic bare metal software bring up.   

 

This paper will present the single processor DV and virtual platform methodologies and results, 

and discuss the extensions to these methodologies for DV and software development for the 

processing subsystem.   

 

 

Introduction 

The open standard RISC-V Instruction Set Architecture (ISA) [1] provides users with the ability 

to use an ISA with accompanying ecosystem to develop domain-specific processors, thus 

replacing proprietary processors and accelerators.  The RISC-V ISA can also be used to replace 

processors using traditional commercial ISAs, such as Arm, especially in use cases where legacy 

software is not a significant factor in choice of processor.  In this situation, not having to support 

legacy software can allow the elimination of processor features and capabilities, thus enabling 

potential improvements in performance, power and area (PPA) for the processor implementation.   
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The development of a domain-specific processor or processing subsystem involves multiple 

tasks.  Some of these are similar to the tasks if commercial processor IP were being used, such as 

pre-silicon software development.  However, there are several tasks that are unique to this 

situation, including design verification (DV) of the individual processors.  Also, while there is a 

processing subsystem DV task when commercial processor IP is used, this task is more complex 

with a new processor due to the novelty of the processor and the absence of a proven track record 

of past silicon success. 

 

This need for comprehensive RISC-V processor DV is new to the semiconductor community. 

Previously with the standard single-sourced proprietary processor IP cores, users would license 

the IP confident that the processor IP vendor would deliver a pre-verified standard product. 

Users just needed to worry about integrating the processor IP into the rest of the SoC. This is the 

same for the RISC-V processor cores from the processor IP vendors: users only need to worry 

about the integration testing with the rest of the SoC. However, for open-source cores or new 

designs developed from the open standard specification, users have to do the complete RISC-V 

processor functional design verification work themselves.  

 

The focus of this paper is the OpenHW Group Core-V CV32E40Pv2 processor [2].  This is a 32-

bit RISC-V core, originally based on the RI5CY core developed by ETH Zurich for the PULP 

project [3].  The RI5CY was then productized by OpenHW as the CV32E40P, with some 

features of the RI5CY core not implemented.  The CV32E40Pv2 now restores those remaining 

RI5CY features. To this base core are added some custom features to improve data processing 

and inter-processor communication in the processor subsystem fabric.   

 

In this paper the new task of single processor DV is one focus, along with pre-silicon software 

development.  In addition, the extension of the DV methodology to processor subsystem DV is 

briefly discussed. 

 

 

RISC-V Processor DV 

The OpenHW core-v-verif [4] processor verification methodology is used for the verification of 

the base processor plus custom features.  This methodology is an asynchronous step-and-

compare flow, with co-simulation of the RTL processor implementation and the instruction- 

accurate reference model.  The asynchronous step-and-compare flow enables verification of 

asynchronous events such as interrupts, as well as features such as the RISC-V Debug mode.  An 

instruction stream generator is used for constrained random test generation, with functional 

coverage in the DV environment as the quality metric.  A diagram of this flow is shown in 

Figure 1.   

 

There are 6 keys pieces to this DV flow: 

 

1. RTL tracer module 

2. RISC-V reference model 

3. Verification IP (ImperasDV) 
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4. RISC-V Verification Interface (RVVI) between DUT and reference model subsystem 

5. Test stimuli 

6. Functional coverage 

 

 
Fig. 1.  DV environment for the CV32E40Pv2 

 

RTL Tracer Module 

This is the module, written in SystemVerilog, which provides instruction tracing, memory 

information and processor state data to the test environment.  This is the limiting factor in 

processor DV, as any information not communicated by the tracer module cannot be verified.  

For ease of integration with the test environment, the tracer module should use the RVVI-

TRACE standard.   

 

RISC-V Reference Model 

Open Virtual Platforms (OVP) processor modeling APIs (C language) [5] were used for building 

the reference model for the design verification (DV) flow.  This model, with a SystemC wrapper, 

is also used for software development in a virtual platform (software simulation) environment.  

An Imperas simulator, which supports the OVP APIs, is used together with the OVP processor 

model for both the DV and software development flows.  The OVP APIs are publicly available 

from the OVP website, and the OVP models are open source.  The OVP processor model 

supports the full processor functionality, however, it does not model the pipeline and other 

micro-architectural details.  Custom features, including custom instructions and registers, are 

added to the model using an external library.  While the base OVP model is open source, the 

external extension library is under the control of the developers since the complete source tree is 

available under the Apache 2.0 open-source license.  All OVP RISC-V models used the same 

base RISC-V reference model, with appropriate configuration parameters.  The advantage of this 
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model architecture is that the base RISC-V OVP model is used by 10s of users every day, and so 

is rigorously tested both by Imperas and the users.  As the model is upgraded to support the 

custom features in the processor, this upgraded model is used in both the design verification 

(DV) and software development flows.   

 

Verification IP 

The original OpenHW core-v-verif flow for the CV32E40P was developed on an ad hoc basis, 

with pieces added as they were needed.  This was successful: the CV32E40P was verified and 

has been implemented in silicon [6].  However, this flow was not easily extendable to the next 

OpenHW cores.  To add flexibility and extendibility, many of the functions in the test 

environment were combined into modular, parameterized verification IP.   

 

This verification IP, commercialized as the ImperasDV product, includes  

 

• Encapsulation of the reference model in the test environment 

• Selection of the model variant, and any configuration needed of the model 

• DUT reference state storage 

• Synchronization technology: can run in synchronous or asynchronous modes 

• Comparison technology 

• Instruction coverage: simple C-based coverage metrics for just the instructions; this is not 

functional coverage 

 

Being able to run in both synchronous or asynchronous modes enables DV of not only the RISC-

V instructions by themselves, but also DV of features triggered by asynchronous events such as 

interrupts, Debug mode and multi-hart features.   

 

The comparison technology enables comparisons at DUT/Reference Model processor events.  

While this usually means that comparisons are done on instruction retirement, this also enables 

comparisons for processors that have Out of Order (OoO) and/or multi-issue pipelines.   

 

RVVI 

Verification IP, reference models and the DUT are of course critical, but standards allow them to 

be connected efficiently. This was the central concept behind the development of the RISC-V 

Verification Interface, RVVI [7]. RVVI is an open standard available on GitHub that defines the 

key interfaces between the DUT and reference model with the necessary features to support the 

comparison, debug and coverage aspects for RISC-V processor verification shown in Fig 3. In 

addition, as this is not limited to any one core project or company, it can be seen as a universal 

solution that others can build on. RVVI already supports all the ratified RISC-V specifications 

and tracks the latest draft extensions as they stabilize.  

 

RVVI has two primary pieces.  The first is RVVI-TRACE, to interface the DUT to the test 

environment, as shown in Fig. 2.  The second is RVVI-API, for interfacing to the reference 

model subsystem, as shown in Fig. 3.   
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Fig. 2.  RVVI-TRACE is the interface between the DUT, in particular the tracer, and the verification IP. 

 
 

 
Fig. 3.  RVVI-API defines standard functions that are implemented by RISC-V processor verification IP. 

 

Test Stimuli 

The DV flow developed can use either direct or random stimuli.  The RISC-V International 

compliance tests as well as the OVP architecture validation tests were used as directed tests.  For 

random stimuli, the riscv-dv instruction stream generator [8], an open-source tool, was modified 

to support the CV32E40Pv2 and this DV environment.  This was shown as “corev-dv ISG” in 

Fig. 1.   
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Functional Coverage 

SystemVerilog functional coverage modules were built to support the original CV32E40P 

verification effort.  These coverage modules, which are UVM-compliant, are being extended for 

the additional functionality in the CV32E40Pv2.   

 

 

Pre-Silicon Software Development 

To accelerate the development of software, a virtual platform (software simulation) flow is used.  

This starts with just a single processor model, the same OVP model used for DV, instantiated in 

a SystemC environment for basic bare metal software bring up.  By using the same processor 

model as both the DV reference model and for software development, users achieve improved 

consistency between the hardware and software teams.  Using this methodology enables easier 

bring up of the software on the first silicon, reducing this task to just days.   

 

The OVP model of the processor running with the Imperas simulator has one unique feature that 

makes integration with the SystemC environment much easier, and the performance more 

efficient:  the Imperas simulator can be a slave to the SystemC simulator.  Most of the virtual 

platform will be SystemC models of the behavioral and peripheral components of the SoC or 

processing subsystem.  The SystemC simulator, by definition of the SystemC standard including 

simulation kernel, needs to be the master simulator, controlling the event scheduler.  The 

Imperas simulator can let another simulator, in this case the SystemC simulator, drive its own 

event scheduler.   

 

With this slave configuration, the OVP processor model looks to the SystemC virtual platform as 

another native SystemC model.  This means that the OVP model executes in the SystemC 

process, and does not require a co-simulation configuration.  This also enables a low overhead 

(less than 1%) for integrating the OVP model with the SystemC environment.  SystemC DMI 

and other SystemC features are also used for integration to reduce overhead.  OVP processor 

models typically execute at 300-500 million instructions per second, and since the bulk of the 

simulation time is spent in the processor model, the low overhead to achieve maximum 

simulation performance is critical.   

 

 

Further Work:  Processing Subsystem 

 

Dolphin Design’s Panther processor is a multicore processing subsystem embedding several 

instances of an enhanced CV32E40Pv2 core optimized for digital signal and AI/ML processing. 

Extending the work in this paper from a single processor to the processing subsystem is the next 

major effort.  For DV of the processing subsystem, there are different verification goals, such as 

verifying the interactions between two processors, verifying the interactions with any other 

behavioral components and verifying the processor in a many-processor subsystem with all the 

communications between processors.  This could involve different DV environments, perhaps 
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even with the reference model being used instead of some number of the RTL instances in the 

processing subsystem DUT.   

 

For the virtual platform flow, the mechanics of instancing multiple processor models in the 

virtual platform of the subsystem are straightforward.  The complexities arise when modeling a 

complete processor subsystem which includes dedicated hardware for processor synchronization, 

DMA controller and shared cache, and to provide the debug and analysis capabilities of the 

software running on the processor subsystem.  An additional complexity comes from the tradeoff 

between simulation accuracy and simulation performance: wanting as much timing accuracy as 

possible while maintaining simulation performance of near real-time.   

 

 

Conclusions 

For customized, domain-specific RISC-V processors to become an established, low risk choice 

for SoCs the use of these processors must become easier, with key methodologies and best-

known practices available to the semiconductor community.  One of those key methodologies is 

processor design verification.  An asynchronous step-and-compare methodology has been 

presented in this paper, together with the main components of that methodology.  Early, pre-

silicon software development is another key methodology, and while virtual platform-based 

development is established for certain commercial processors, work on tools and models is 

needed for adoption by RISC-V users.  An important piece of this work is showing that the same 

model can and should be used both as the DV reference model and the processor model for the 

virtual platform.   
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