

1

The Cost of Standard Verification Methodology
Implementations

Abigail Williams, Graphcore Ltd, Bristol, UK (abigailw@graphcore.ai)

Svetlomir Hristozkov, Graphcore Ltd, Bristol, UK (svetlomirh@graphcore.ai)

Adam Hizzey, Graphcore Ltd, Bristol, UK (adamh@graphcore.ai)

Abstract—The silicon verification industry typically uses a combination of the Universal Verification Method and
SystemVerilog based constrained random metrics-driven approach to verification. This paper will quantify and
contrast the performance costs of this approach for frequent actions across multiple EDA vendors and against a
proprietary C++ implementations. The setup and measures taken in ensuring the fairness of these microbenchmarks
are presented. Finally, results are compared over time to ensure reliability of the data and conclusions drawn.

Keywords— SystemVerilog; C++ ; Performance Measurement; Microbenchmarks; String Formatting;

I. INTRODUCTION

The verification industry has largely agreed on its approach to verification – employing a constrained-random
and metrics-driven strategy [1]. While some variation exists (e.g. CocoTb [2]), many projects favour a testbench
which uses the Universal Verification Methodology (UVM) for all stimulus generation and SystemVerilog standard
coverage features for coverage collection.

The standardization of verification testbench environments has brought about numerous benefits, particularly
at the time when the deceleration in Moore’s Law was first introducing a transition to more complex architectures
and therefore more simulation cycles. This process has only accelerated since UVM’s IEEE standardization in
2017. Despite this, there is little quantified research into the cost of this implementational choice.

Graphcore’s verification team conversely uses a proprietary in-house implementation of the same concepts but
over time has had to integrate it with a variety of UVM/standard SV verification IP. As a result, we have anecdotally
observed degraded performance in terms of the number of tests we can run overnight.

Figure 1 provides a visual representation of the proportion of time spent performing certain actions in two
different testbench simulations. The testbench used to produce Figure 1a incorporates UVM and SystemVerilog
into its verification environment, as well as Graphcore’s inhouse C++ and Python methods for modelling and
coverage collection. The testbench used to produce Figure 1b exclusively uses a custom C++ based methodology
for verification. Both testbenches use some C++, so a similar proportion of time is spent performing Direct
Programming Interface (DPI) calls. The UVM based testbench reports verification time used under the “Verilog
Package” category. In a perfect world the verification portion of a testbench will be minimised and the time will be
spent actually simulating cycles i.e. under the “Kernel” and “Verilog Module” categories. The Verilog package
takes up 5.84% of the simulation time for the first testbench, but just 0.55% for the second. The kernel and Verilog
module take up a combined proportion of 82% of simulation time for the first testbench, which is significantly
lower than the 91% combined proportion seen in the second testbench. While this is not a perfect apples-to-apples
comparison, these figures suggest that there may be an inherent cost involved in using standard UVM based TB
with SV based coverage collection.

2

This paper will present a study into the cost of performing some of the most common actions employed in a
verification environment such as this; The selected actions will be evaluated across EDA tool vendors Graphcore

had access to at the time of writing and further as well as against Graphcore’s inhouse proprietary implementations
employing C++ and Python.

The actions selected to be benchmarked are:

• Message printing and formatting

• Coverage collection

• The implementation of the common observer pattern employed in UVM’s Transaction Layer
Modelling (TLM) vs a proprietary Graphcore inhouse implementation

This choice is based on qualitative judgement and anecdotal evidence when exploring profiling logs generated by
EDA tools but also somewhat limited due to the time available for the project. Further exploration into constraint
solvers in EDA tools, among others, should be made.

II. PERFORMANCE MEASUREMENT APPROACH

A. Measurement Setup Architecture
In order to compare the performance of a SystemVerilog / UVM verification environment with Graphcore’s

corresponding implementation, the cost of various commonly performed actions has been quantified. Each of the
abovementioned selected actions is implemented using SystemVerilog, then replicated in C++ and executed across
all available simulators. The approaches used to measure the time taken for each action to complete are illustrated
in Figure 2.

The Chrono C++ library [3] is used to measure the elapsed time between the invocation of
“start_measurement” and the call to “stop_measurement”. As seen in Figure 2, each of the actions start in
SystemVerilog. When benchmarking SystemVerilog and UVM models, the DPI is used to call
“start_measurement” and “stop_measurement”. However, when benchmarking C++ models, the DPI is used to
select the relevant test, with calls to start and stop the timing measurements then being invoked from within C++.
Measurements omitting the second step of performing an action have been taken to quantify the time taken for a
DPI call; this allows the cost of the additional DPI calls in the SystemVerilog and UVM benchmark tests to be
accounted for when contrasting the timing measurements with the equivalent C++ tests.

68%

14%

6%
5%

7%

87%

4%

1%
5%

3%

Figure 1 Pie charts displaying the proportion of simulation time spent performing certain actions for two different testbenches. The testbench used to
produce Figure a incorporates UVM and SystemVerilog in the verification environment, as well as Graphcore’s inhouse verification methods. The

testbench used to produce Figure b exclusively utilizes C++ and Python methods of verification.

Figure 1a Figure 1b

3

The benchmark tests are run nightly on a single reserved machine that will have no other jobs running on it,
as part of a suite of performance measurements that Graphcore runs on its codebase. The results plots in Section
III show the benchmark time of individual test runs (Y-axis) over the days that the tests were run (X-axis). A
lower execution time is better.

Only one action is tested at a given time, in order to minimize any disturbances which might interfere with the
measurements taken. Each measurement is also performed 100 times, so as to minimize the error in reporting and
across each simulator tool due to intermittent machine fluctuations such as OS processes or cosmic rays. Measuring
the performance of each action over time will also allow the amount of variation in the measurements to be
determined.

Figure 2 A visualisation of the approach taken to measure the time cost of performing various actions. Figure a shows the method used to
benchmark actions in a UVM and SystemVerilog environment. Figure b shows the method used to benchmark the same actions when
implemented in a C++ environment.

B. Benchmark Method
Some of the actions likely to incur a significant cost in simulation runtime have been identified as: transaction-

level modelling (TLM), coverage collection, formatting and messaging. Two common simulators were tested.

1) Transaction Level Modelling
The time cost of TLM refers to the time penalty incurred when transporting a packet from a monitor to the

eventual consumer within a TLM network. The model used to benchmark this consists of 100 sequentially
connected ports and exports. The timing measurement is started as a uvm_item containing a single 32-bit variable
is pushed into the first port and then stopped when the same packet reaches the final export in the chain.

2) Functional Coverage Collection
The timing measurements taken for coverage collection refer to the time it takes a simulator to mark a hit for a

given coverpoint within its own data structure, before it can return and resume running the test itself. The test used
to benchmark this takes two coverage points which are constructed using either SystemVerilog’s coverage
sublanguage or Graphcore’s custom C++ coverage backend. Each coverpoint is divided into 256 bins. 16-bit signal
values generated using SystemVerilog’s $urandom can then be sampled by these coverpoints, with the value of the
top 8-bits being sampled by the first coverpoint and the lower 8-bits by the second coverpoint. The same seed and
therefore identical values are sampled for both methods. The time taken to mark a hit for the cross coverage of
these two coverpoints is then measured across all simulators.

DPI
select_test

Perform Action start_measurement

SV

C++

call

Chrono Measure stop_measurement

DPI
start_measurement Perform Action DPI

stop_measurement

Chrono Measure

SV

C++

call
return

call

Figure 2a.

Figure 2b.

4

3) String Formatting & Messaging
The cost of formatting strings is also investigated, contrasting the performance of SystemVerilog’s $sformatf

and the fmt formatting library in C++ [4]. The time taken for 1,000 strings to be consecutively formatted will be
recorded as one measurement, then averaged to find a time cost per string. This will help account for noise in each
measurement by minimizing the number of DPI calls required to start and stop measurements. The variation in the
time taken for a DPI call is significant enough that it could distort the average time taken to format a string using
$sformatf. Message statements with a verbosity below the global logging level are not formatted when lazy logging
is used, as they will never be printed. The amount of time which could be saved through the use of lazy logging is
also considered [5].

The cost of messaging using SystemVerilog’s $display and C++’s printf is evaluated. This can be determined by
measuring the time taken for each messaging implementation to print the same set of strings.

III. RESULTS

A. Cost of DPI invocations
In order to ensure the timing measurements for C++ and SystemVerilog tests were comparable, the time cost of

the DPI calls when starting and stopping measurements must be quantified. Figure 3 shows measurements of the
time taken for “start_measurement” and “stop_measurement” to be called sequentially, with each data point
displaying the average of 100 of these empty timing measurements. Two of the commonly used EDA tools were
used to record these measurements. The average time cost of the measurement infrastructure over time can be seen
in Table 1.

 Simulator
A

Simulator
B

Mean
(ns)

270.111 313.846

Table 1 The mean value (ns) of the time taken to
perform a DPI call, with data taken from Figure 3

for each of the simulators.

Figure 3 Data displaying the time taken (ns) for a DPI call to be performed over
time. Measurements are taken for two different simulator tools.

5

B. Transaction Layer Modelling
The same two simulators were used to benchmark the time penalty incurred when transporting a 32-bit packet

through a TLM network. It is noticeable in Figure 4 that the packet was transported through the C++ implementation
of the TLM network much faster than for the SystemVerilog equivalent. The data in Table 2 shows a decrease in
the time penalty incurred by factor of almost 5 for Simulator A and just over 21 for Simulator B. The scale of this
difference is large enough that the 400 ns cost of the additional DPI calls used to start and stop the SystemVerilog
model’s timing measurements only has a marginal effect.

 SystemVerilog Simulator
A

Simulator B

Mean (μs) 40.615 108.597

C++

Mean (μs) 7.707 5.436

Table 2 The mean value (μs) of each set of data
forming a trace in Figure 4.

C. Functional Coverage Collection
Collecting the cross coverage described in Section II.B.2) resulted in CPU cache hit rate of almost 100%. This

is due to the limited size of the testbench used to microbenchmark this action. A typical verification testbench
would normally use far more memory and consequently lower cache hit rate. In order to make the benchmark more
representative of coverage collection within a realistic simulation, a large unused array was instantiated each time
data was sampled. This revealed that Simulator A had a significantly lower cache hit rate than Simulator B when
collecting coverage in SystemVerilog. Figure 5 shows that Simulator A is drastically slower to record a cross
coverage hit than Simulator B. Table 3 shows that this difference is of multiple orders of magnitude.

Large unused arrays were also instantiated for the coverage collection test when replicated in C++. Figure 5
shows that this was faster than the SystemVerilog equivalent, regardless of the simulator tool used – each took an
average time of around 2.5 µs to record a cross coverage hit.

Figure 4 Data displaying the time taken (μs) for a 32-bit packet to be transported
through 100 ports and 100 exports connected sequentially. This is repeated for
two different simulators, as well as models implemented in SV and UVM, or

C++.

6

SystemVerilog Simulator
A

Simulator
B

Mean (μs) 273.95 492.28

C++

Mean (μs) 2.52 2.37

Table 3 The mean value (μs) of each set of data
forming a trace in Figure 5.

D. String formatting
Figure 6 and Table 4 display various measurements for the time taken to format a single string, using either the

C++ fmt library or SystemVerilog’s $sformatf. Formatting is clearly faster in C++ than SystemVerilog, no matter
the simulator tool used.

As a further optimisation, one could choose to perform formatting only if the message is going to be printed i.e.
it matches the specified logging verbosity and filters. This functionality is commonly referred to as lazy messaging.
Even if the $sformatf system task is variadic, SystemVerilog as a programming language does not support variadic
arguments. This deficiency prevents the implementation of a lazy formatting feature in UVM whilst doing so in
C++ or other programming languages would be trivial. The lost potential saving here is given by the total formatting
time in SV in each simulator (374 ns and 976 ns respectively). This lost time could quickly accumulate in
testbenches with significant debug messaging implemented.

Figure 5 Data displaying the time taken (ns) for the cross coverage of two 8-bit
coverpoints to be recorded. This is done for coverpoints instantiated in either SV or

C++, with each being measured with two different simulators.

7

SystemVerilog Simulator A Simulator B

Mean (ns) 459.018 1345.363

C++

Mean (ns) 108.077 100.961

Table 4 The mean value (ns) of each set of data
forming a trace in Figure 6.

E. String printing
Figure 7 shows the time taken for a simple message to be printed using either the classic C printf or $display in

SV. Table 5 indicates that printing in C++ is approximately 2 times faster than in SystemVerilog.

The cost of messaging might not appear to be the most obvious limiting factor when considering the
performance of verification simulations. However, the timing measurements displayed above show that the time
taken to print a message is of the same order of magnitude as both coverage collection and TLM. Simulation logs
can contain thousands of messages, so the messaging speedup offered by C++ could significantly reduce the amount
of time spent logging.

In fact, even DPI calls with a string to be passed to printf significantly outperform $display for both vendors
evaluated. This measurement indicates an obvious low hanging fruit that EDA vendors could look to rectify.

Figure 6 Data displaying the time taken (ns) for a string to be formatted using either
the C++ fmt library or SystemVerilog’s $sformatf.

8

 SystemVerilog Simulator
A

Simulator
B

Mean (ns) 1897.467 2071.053
C++
Mean (ns) 370.424 298.526
Table 5 The mean value (ns) of each set of data

forming a trace in Figure 7.

IV. CONCLUSION

For every action which has been investigated in this paper, the C++ implementations have been consistently
faster. This is true for both simulator tools used. Additionally, for each of the benchmarked actions there is much
more variance in the measurements taken for the SystemVerilog and UVM tests compared to their corresponding
C++ counterparts. This is visible by looking at each of the figures in this section, and conclusively shown by the
data in each of the tables. This is true regardless of the simulator tool used.

The results above highlight the simulation time which could be saved when each of these actions are performed
once using C++, rather than SystemVerilog and UVM. The cumulative time saved through utilizing faster
implementations of each commonly performed action could therefore be substantial, potentially saving many
compute hours.

The cost of compute along with engineering time spent waiting on an interactive run is ever increasing due to
ever more complex designs. The industry as a whole could do well to pay more attention to compute cost of the
commonly accepted flows and methods.

REFERENCES
[1] M. Cieplucha, “Metric-driven verification methodology with regression management,” Journal of Electronic Testing Volume 35, p. 101-

110, 2019.
[2] C. H. Stuart Hodgson, “CocoTb Documentation,” [Online]. Available: https://docs.cocotb.org/en/latest/. [Accessed 6 June 2022].

[3] C. c. 1. Docs. [Online]. Available: https://en.cppreference.com/w/cpp/chrono/ [Accessed 6 June 2022].
[4] V. Zverovich, “Making string formatting fast,” [Online]. Available: https://www.zverovich.net/2012/12/15/making-string-formatting-

fast,” [Online]. [Accessed 6 June 2022].

[5] Przemodev, “Lazy logging – how to properly log in Python?”, 22 November 2021. [Online]. Available:
https://www.przemodev.com/blog/articles/lazy-logging-how-to-properly-log-in-python. [Accessed 6 June 2022]

Figure 7 Data displaying the time taken (ns) for a
string to be printed using either C++’s printf or

SystemVerilog’s $display.

