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History

• SystemVerilog RTL with custom 
C++/Python verification 
methodology
• Constrained random test 

generation
• Metrics driven with coverage
• CI/CD with >100,000 compute 

hours daily

• Some effort to optimise 
performance
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Benchmarks Introduction

• Timing in C++ with <chrono>
• SystemVerilog tests have extra 

DPI overhead
• Minimised by iterating 100 times 

per timer call

• Performance tests run in CI
• Dedicated performance machines
• Results stored in SQL database
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Benchmarks Introduction

• “Microbenchmarks” 
• DPI calls of C++ functions from SystemVerilog
• TLM modelling

• Passing transactions between components
• Functional coverage collection
• String formatting & display
• Constraint solvers & test generation [future work]

• Identify performance regressions for common tasks
• Not a substitute for profiling real testbenches



Data – DPI Overhead

• DPI calls to start the timer then 
immediately stop it
• Calls from SystemVerilog to C++ 

will have this ~ 0.2μs overhead
// SystemVerilog
for (int j = 0; j < 100; j++) begin

cpp_timing_lib_start_measurement();
cpp_timing_lib_stop_measurement();

end



Data – TLM Ports
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Data – Functional Coverage Collection

Standard SystemVerilog Custom C++ Coverage Bridge

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

// SystemVerilog
// 256x256 bin cross

logic[15:0] my_var;

covergroup cg;
first_cp : coverpoint my_var[15:8];
second_cp : coverpoint my_var[7:0];
firstXsecond: cross first_cp, second_cp;

endgroup
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Data – Functional Coverage Collection

• Version upgrade of Simulator A
on October 26th

• Correlates with 40% performance 
boost 🚀

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

// SystemVerilog
// 256x256 bin cross

logic[15:0] my_var;

covergroup cg;
first_cp : coverpoint my_var[15:8];
second_cp : coverpoint my_var[7:0];
firstXsecond: cross first_cp, second_cp;

endgroup

https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/


Data – Functional Coverage Collection

• Same plot as previous slide but 
with Simulator A removed
• Version upgrade of Simulator B 

on October 12th

• Possibly correlates with slight 
regression in performance
• Tools don’t always get faster

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/


Data – String Display

// SystemVerilog
for (int j = 0; j < 1000; j++) begin
$display(test_string);

end

// C++
for (int j = 0; j < 1000; j++) {
printf(test_string);

}



Data – String Formatting
// SystemVerilog
for (int j = 0; j < 1000; j++) begin
my_str = $sformatf(
"Hello world %s %d",
test_string, j);

end

// C++
for (int j = 0; j < 1000; j++) {
my_str = fmt::format(
"Hello world {} {}",
test_string, j);

}

C++ {fmt} library https://github.com/fmtlib/fmt

https://github.com/fmtlib/fmt


Data – String Formatting

• Version upgrade of Simulator B 
on October 12th

• Correlates with 60% performance 
boost

• Consider lazy formatting in C++



Conclusion

• The DPI is your friend
• Write yourself some benchmarks
• Evaluate upgrades to newer releases of your tool
• Quantify gains and losses from custom methodologies
• Spot long-term trends

• Demand more performance
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