
The Cost Of Standard Verification Methodology
Implementations

Adam Hizzey, Abigail Williams, Svetlomir Hristozkov
Graphcore Ltd, Bristol, UK

Acknowledgement

Thanks to Abigail Williams for generating and analysing the data
presented here

History

• SystemVerilog RTL with custom
C++/Python verification
methodology
• Constrained random test

generation
• Metrics driven with coverage
• CI/CD with >100,000 compute

hours daily

• Some effort to optimise
performance

History

68%

14%

6%

5%
7%

UVM & C++

87%

4% 1%

5% 3%

NO UVM

Kernel Verilog Module

Verilog Package DPI C

Other

• SystemVerilog RTL with custom
C++/Python verification
methodology
• Constrained random test

generation
• Metrics driven with coverage
• CI/CD with >100,000 compute

hours daily

• Some effort to optimise
performance

Benchmarks Introduction

• Timing in C++ with <chrono>DPI
select_test

Perform Action x100start_measurement

SV

C++

call

Chrono Measure stop_measurement

C++ Benchmarks

Benchmarks Introduction

• Timing in C++ with <chrono>
• SystemVerilog tests have extra

DPI overhead
• Minimised by iterating 100 times

per timer call

DPI
start_measurement Perform Action x100

DPI
stop_measurement

Chrono Measure

SV

C++

call
return

call

SystemVerilog Benchmarks

DPI
select_test

Perform Action x100start_measurement

SV

C++

call

Chrono Measure stop_measurement

C++ Benchmarks

Benchmarks Introduction

• Timing in C++ with <chrono>
• SystemVerilog tests have extra

DPI overhead
• Minimised by iterating 100 times

per timer call

• Performance tests run in CI
• Dedicated performance machines
• Results stored in SQL database

DPI
start_measurement Perform Action x100

DPI
stop_measurement

Chrono Measure

SV

C++

call
return

call

SystemVerilog Benchmarks

DPI
select_test

Perform Action x100start_measurement

SV

C++

call

Chrono Measure stop_measurement

C++ Benchmarks

Benchmarks Introduction

• “Microbenchmarks”
• DPI calls of C++ functions from SystemVerilog
• TLM modelling

• Passing transactions between components
• Functional coverage collection
• String formatting & display
• Constraint solvers & test generation [future work]

• Identify performance regressions for common tasks
• Not a substitute for profiling real testbenches

Data – DPI Overhead

• DPI calls to start the timer then
immediately stop it
• Calls from SystemVerilog to C++

will have this ~ 0.2μs overhead
// SystemVerilog
for (int j = 0; j < 100; j++) begin

cpp_timing_lib_start_measurement();
cpp_timing_lib_stop_measurement();

end

Data – TLM Ports

… x100

• Total time for a transaction to
pass through a chain of 100 TLM
components

TLM
Component

TLM
port

TLM
port

TLM
Component

TLM
port

TLM
port

TLM
Component

TLM
port

TLM
port

Data – Functional Coverage Collection

Standard SystemVerilog Custom C++ Coverage Bridge

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

// SystemVerilog
// 256x256 bin cross

logic[15:0] my_var;

covergroup cg;
first_cp : coverpoint my_var[15:8];
second_cp : coverpoint my_var[7:0];
firstXsecond: cross first_cp, second_cp;

endgroup

Key

Python

C++

SystemVerilog

DUT
Coverage

Bridge

C++
TLM

Model

Python
Collection

DPI

Coverage
Bridge

Boost
Python

C++
Backend

https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

Data – Functional Coverage Collection

• Version upgrade of Simulator A
on October 26th

• Correlates with 40% performance
boost 🚀

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

// SystemVerilog
// 256x256 bin cross

logic[15:0] my_var;

covergroup cg;
first_cp : coverpoint my_var[15:8];
second_cp : coverpoint my_var[7:0];
firstXsecond: cross first_cp, second_cp;

endgroup

https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

Data – Functional Coverage Collection

• Same plot as previous slide but
with Simulator A removed
• Version upgrade of Simulator B

on October 12th

• Possibly correlates with slight
regression in performance
• Tools don’t always get faster

See DVCon paper No Country For Old Men for more on coverage
https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

https://dvcon-proceedings.org/document/no-country-for-old-men-a-modern-take-on-metrics-driven-verification/

Data – String Display

// SystemVerilog
for (int j = 0; j < 1000; j++) begin
$display(test_string);

end

// C++
for (int j = 0; j < 1000; j++) {
printf(test_string);

}

Data – String Formatting
// SystemVerilog
for (int j = 0; j < 1000; j++) begin
my_str = $sformatf(
"Hello world %s %d",
test_string, j);

end

// C++
for (int j = 0; j < 1000; j++) {
my_str = fmt::format(
"Hello world {} {}",
test_string, j);

}

C++ {fmt} library https://github.com/fmtlib/fmt

https://github.com/fmtlib/fmt

Data – String Formatting

• Version upgrade of Simulator B
on October 12th

• Correlates with 60% performance
boost

• Consider lazy formatting in C++

Conclusion

• The DPI is your friend
• Write yourself some benchmarks
• Evaluate upgrades to newer releases of your tool
• Quantify gains and losses from custom methodologies
• Spot long-term trends

• Demand more performance

Thank You
The Cost Of Standard Verification Methodology Implementations

