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RISC-V

• Free and open Instruction Set Architecture
• Growing rapidly, open collaboration
• HPC, automotive, transportation, cloud, communications, 

consumer, IoT, etc.
• Modular ISA

• Vector extension



Vector Processing 
Unit (VPU)
● DUT
● Vector extension 0.7.1

○ Updating to 1.0
● Different “flavors”

○ EPI*
○ eProcessor*



● Core (Avispado) 
developed by partner 
(Semidynamics)

● Communicates with the 
VPU through OVI

● Vector memory accesses 
are performed by the 
core



● Different interface for 
communicating with 
the core

● VPU access memory 
directly through 
AMBA5 CHI interface

● Interface needs signals 
to solve memory 
aliasing issues



Previous environment

● One agent per each OVI 
channel
○ Massive interprocess 

communication
● Difficult to maintain, 

adapt and evolve



New UVM environment

● Common to all projects using the VPU
● Base interface-agnostic verification 

environment with common 
components (vpu-dv)
○ Test generation
○ Reference model usage
○ UVCs
○ Interface abstract class
○ Continuous integration
○ Coverage collection and reporting

● Project-specific environment
○ Interface implementation
○ Modified reference model library
○ Specific configurations



Verification environment flow



vpu-dv

● Interface base abstract class
○ With methods called by UVCs
○ Implemented in specific project environment

1.  pure virtual task do_protocol(); //Runs the specific protocol of the interface to stimulate the DUT
2.  pure virtual task wait_for_clk(int unsigned num_cycles = 1) ; //Waits for as many num_cycles cycles of the interface clock
3.  pure virtual function drive (ins_tx req); //Pushes the instruction inside the transaction into the pending instructions queue
4.  pure virtual function bit new_ins_tx(); //Returns whether or not there are new instructions received from the driver
5.  pure virtual function iss_state_t monitor_pre(); //Returns the first pending instruction received from the driver
6.  pure virtual function bit new_dut_tx(); //Returns whether or not there are new completed instructions
7.  pure virtual function dut_state_t monitor_post(); //Returns the first pending completed instruction's result
8.  pure virtual function bit new_protocol_tx(); //Returns whether or not there are new completed instructions
9.  pure virtual function protocol_instr_t monitor_protocol(); //Returns the first pending completed instruction
10. pure virtual function protocol_instr_t next_infl_instr(); //Returns the first inflight instruction



vpu-dv + project specific



vpu-dv

● Reference model
○ Wrapper abstract class

■ Declares methods to be implemented by ISS.
■ Wrapper class overridden in build phase of uvm_test:

● set_type_override_by_type(env_pkg::env::get_typ
e(), eprocessor_env::get_type());

○  Derived class
■ Implements methods

● Spike
○ C++ implemented
○ Communication done using DPI.
○ Specific versions for each project, with different 

configurations



vpu-dv

● Test generation
○ tests repository as submodule

■ ISA tests with different configurations
■ Branch of submodule specified by project 

environment
○ RISCV-DV random binary generator

■ Modified according to our needs and for different 
projects.

■ Executed as first step in CI pipelines flow



epac-vpu-dv



epac-vpu-dv



epac-vpu-dv



eprocessor-vpu-dv



eprocessor-vpu-dv



eprocessor-vpu-dv



Conclusions

● Developed a verification infrastructure reusable for many 
projects
○ Currently for EPI SGA1 and eProcessor
○ In development for EPI SGA2 (RVV 1.0)

● Easy to extend and maintain
● Ability to uncover more bugs
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Questions? 


