
Reusable Verification Environment
for a RISC-V Vector Accelerator

R. Ignacio Genovese, Josue Quiroga, Ivan Diaz, Henrique Yano,
Asif Ali, Nehir Sonmez, Oscar Palomar, Victor Jimenez, Mario

Rodriguez, Marc Dominguez.

RISC-V

• Free and open Instruction Set Architecture
• Growing rapidly, open collaboration
• HPC, automotive, transportation, cloud, communications,

consumer, IoT, etc.
• Modular ISA

• Vector extension

Vector Processing
Unit (VPU)
● DUT
● Vector extension 0.7.1

○ Updating to 1.0
● Different “flavors”

○ EPI*
○ eProcessor*

● Core (Avispado)
developed by partner
(Semidynamics)

● Communicates with the
VPU through OVI

● Vector memory accesses
are performed by the
core

● Different interface for
communicating with
the core

● VPU access memory
directly through
AMBA5 CHI interface

● Interface needs signals
to solve memory
aliasing issues

Previous environment

● One agent per each OVI
channel
○ Massive interprocess

communication
● Difficult to maintain,

adapt and evolve

New UVM environment

● Common to all projects using the VPU
● Base interface-agnostic verification

environment with common
components (vpu-dv)
○ Test generation
○ Reference model usage
○ UVCs
○ Interface abstract class
○ Continuous integration
○ Coverage collection and reporting

● Project-specific environment
○ Interface implementation
○ Modified reference model library
○ Specific configurations

Verification environment flow

vpu-dv

● Interface base abstract class
○ With methods called by UVCs
○ Implemented in specific project environment

1. pure virtual task do_protocol(); //Runs the specific protocol of the interface to stimulate the DUT
2. pure virtual task wait_for_clk(int unsigned num_cycles = 1) ; //Waits for as many num_cycles cycles of the interface clock
3. pure virtual function drive (ins_tx req); //Pushes the instruction inside the transaction into the pending instructions queue
4. pure virtual function bit new_ins_tx(); //Returns whether or not there are new instructions received from the driver
5. pure virtual function iss_state_t monitor_pre(); //Returns the first pending instruction received from the driver
6. pure virtual function bit new_dut_tx(); //Returns whether or not there are new completed instructions
7. pure virtual function dut_state_t monitor_post(); //Returns the first pending completed instruction's result
8. pure virtual function bit new_protocol_tx(); //Returns whether or not there are new completed instructions
9. pure virtual function protocol_instr_t monitor_protocol(); //Returns the first pending completed instruction
10. pure virtual function protocol_instr_t next_infl_instr(); //Returns the first inflight instruction

vpu-dv + project specific

vpu-dv

● Reference model
○ Wrapper abstract class

■ Declares methods to be implemented by ISS.
■ Wrapper class overridden in build phase of uvm_test:

● set_type_override_by_type(env_pkg::env::get_typ
e(), eprocessor_env::get_type());

○ Derived class
■ Implements methods

● Spike
○ C++ implemented
○ Communication done using DPI.
○ Specific versions for each project, with different

configurations

vpu-dv

● Test generation
○ tests repository as submodule

■ ISA tests with different configurations
■ Branch of submodule specified by project

environment
○ RISCV-DV random binary generator

■ Modified according to our needs and for different
projects.

■ Executed as first step in CI pipelines flow

epac-vpu-dv

epac-vpu-dv

epac-vpu-dv

eprocessor-vpu-dv

eprocessor-vpu-dv

eprocessor-vpu-dv

Conclusions

● Developed a verification infrastructure reusable for many
projects
○ Currently for EPI SGA1 and eProcessor
○ In development for EPI SGA2 (RVV 1.0)

● Easy to extend and maintain
● Ability to uncover more bugs

Acknowledgments

*This research has received funding from the European High Performance Computing Joint Undertaking (JU)
under Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific Grant
Agreement No 101036168 (EPI SGA2) and No 956702 (eProcessor) .

The JU receives support from the European Union’s Horizon 2020 research and innovation programme and
from Croatia, France, Germany,Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland.

The EPI-SGA2 project,PCI2022-132935_N1618737 is also co-funded by MCIN/AEI /10.13039/501100011033
and by the UE NextGenerationEU/PRTR.

Questions?

