
Unified firmware debug throughout SoC
development lifecycle

D. Ciaglia ¹, T. Winkler ¹, J. Kundrata ²

¹ ams-OSRAM International GmbH
² University of Zagreb

Agenda
• Introduction

• Background

• Proposed Approach

• Implementation of the DPI-based SoC Simulator

• Conclusions

Smart Sensors

• Consumer and automotive market
demand

• Build-up intelligence

• Provide a smart sensor solution is
key

External
Sensor

Smart Sensor SoC

MCU

Memory

On-Chip Sensor

Interface
to Host

Interface
Periphery

Pre-Silicon Verification

• Create a test-bench close to the
real system

• Leverage complete system internal
observability

• Ensure bug-free design (hardware
and firmware)

System Verilog Test-bench

Processor-based
System Under

Test

Firmware

Test-
Cases

Pre-Silicon Firmware Debugging

• Build FPGA Prototype

• Implement SW test-cases

• Use the standard debug and test
tools

FPGA Prototype

Firmware
Debugger

Host PC

Test-
Cases

Limitations of Standard Approach

• System-Verilog tests cannot be re-
used for firmware debugging

• Firmware debugging is bound to
FPGA prototype availability

 Development Time

SV

Te
st

b
en

ch
St

an
d

ar
d

SW
 d

e
b

u
g

Time Gap

Tools Boundary

IC Design and Simulation

FPGA Prototype

Silicon

Firmware Test and Debug

Co-Verification Techniques

Technique Speed Timing Software Debug Cost

Instruction
set simulation

Medium No C Model Algorithm Low

HW/SW
co-verification

Slow Yes Real HW/SW High

Rapid
Prototyping

Fast Yes Real Low Medium

Emulation Very fast Yes Real Low Very high

• Use a technique during
design phase

• Ensure high
observability

• Maximize tests re-use

HW/SW Co-verification

• Key enabler for “shift left”

• Maximize firmware tests re-
use

• Enables on-chip debugging

 Development Time

SV

Te
st

b
en

ch
+

 S
W

 D
e

b
u

g

St
an

d
ar

d
SW

 d
e

b
u

g

Time Gap

Tools Boundary

IC Design and Simulation

FPGA Prototype

Silicon

Firmware Test and Debug

Co-verification Environment

• Direct SW interaction with HW

• Full observability guaranteed by
HW Engine

• Design for Debug Logic for
standard interface

• “Soft” debug interface

Hardware Engine

Processor-based
SoC

DFD
Logic

SW Framework

Software

DebuggerDebug Interface

Proposed Approach – Case Study

• Direct programming
interface for HW/SW
interaction

• Open source debugger

• Standard SW framework
based on GDB

• Python-based DOTT for
tests development

HW Engine/Simulator

SWD DPI

I2C DPI
Python
Driver

I2
C

B
itb

a
n

g

OpenOCD

SW
D

B
itb

an
g

G
D

B
Se

rve
r

SW Framework

GDB Client

DOTT

ARM DS

TCP/IP

TCP/IP

SWD

SOC under Test

I2C slave

Cortex-M

Firmware
Under Test

I2C

TCP/IP

TCP/IP

FPGA or Post-Si Debug Environment

I2C-USB Bridge

Debug Probe

SW Framework

GDB Client

DOTT

ARM DS

SWD

SOC under Test

I2C slave

Cortex-M

Firmware
Under Test

I2C

• Swap the DPI with real
debug probe

• Re-use of standard SW
debug tools

• Re-use of test-cases

Simulation environment

• SV testbench --> SoC under Test + DPIs

• SoC under Test --> ARM Cortex-M core with SWD and I2C interfaces

• SWD DPI --> SWD debugger probe controlled via TCP port using a

bitbang protocol and OpenOCD tool

• I2C DPI --> I2C master core controlled via TCP port using a bitbang

protocol and a Python driver module

Implementation of the SWD-DPI

• Based on OpenTitan
implementation of JTAG DPI

• JTAG --> all pins are
unidirectional

• SWD --> the data pin
(SWDIO) is bidirectional

swddpi.sv

Implementation of the SWD-DPI

Command Description

O Set the SWDIO line to output mode

o Set the SWDIO line to input mode

c Read the SWDIO line

d Set SWCLK = 0 and SWDIO = 0

e Set SWCLK = 0 and SWDIO = 1

f Set SWCLK = 1 and SWDIO = 0

g Set SWCLK = 1 and SWDIO = 1

swddpi.c

Configuration of the OpenOCD tool

• OpenOCD compiled using the SWD remote bitbang protocol patch
• Changes #3908, #4205 & #6044

• Configuration file:

Implementation of the I2C-DPI

i2cdpi.sv

• Based on OpenTitan
implementation of JTAG DPI

• JTAG --> all pins are
unidirectional

• I2C --> the data pin (SDA) is
bidirectional

Implementation of the I2C-DPI

Command Description

O Set the SDA line to output mode

o Set the SDA line to input mode

c Read the SDA line

d Set SCL = 0 and SDA = 0

e Set SCL = 0 and SDA = 1

f Set SCL = 1 and SDA = 0

g Set SCL = 1 and SDA = 1
i2cdpi.c

The I2C DPI remote bitbang driver

• I2C test sequence

• I2C writes and reads

• Atomic I2C steps

• Bitbang protocol

• TCP connection handling

Compilation of the DPI library

• File organization

• Compilation script

Testing results

Xcelium
Simulation

(SoC, SWD & I2C DPI)

I2C Testing
Sequence

(I2C remote bitbang via TCP)

Telnet
Client

(SWD via OpenOCD)

OpenOCD
Server

(SWD remote bitbang via TCP)

Testing results - Xcelium Simulation
xcelium> run

swd: Virtual SWD interface swd0 is listening
on port 44853. Use OpenOCD and the following
configuration to connect:
interface remote_bitbang
remote_bitbang_host localhost
remote_bitbang_port 44853

I2C: Virtual I2C interface i2c0 is listening
on port 44855.

i2c0: Accepted client connection
I2C DPI: Remote disconnected.
swd0: Accepted client connection

Testing results - OpenOCD Server (I)
[user@linux openocd]$./openocd
Open On-Chip Debugger 0.11.0-rc2+dev-00003-
gb5563b75d-dirty (2022-09-02-17:21)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.h
tml
Info : Listening on port 6666 for tcl
connections
Info : Listening on port 4444 for telnet
connections
Info : Initializing remote_bitbang driver
Info : Connecting to localhost:44853
Info : remote_bitbang driver initialized
Info : This adapter doesn't support
configurable speed

Testing results - OpenOCD Server (II)
Info : SWD DPIDR 0x0bc11477
Info : cortex_m0p_sim: hardware has 4
breakpoints, 2 watchpoints
Info : starting gdb server for cortex_m0p_sim
on 3333
Info : Listening on port 3333 for gdb
connections
Info : accepting 'telnet' connection on
tcp/4444
target halted due to debug-request, current
mode: Thread
xPSR: 0x01000000 pc: 0x20000180 msp:
0x20000508

Testing results - Telnet Client
[user@linux openocd]$ telnet localhost 4444
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> halt
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x20000180 msp: 0x20000508
> reg
===== arm v7m registers
(0) r0 (/32): 0xe000e100
.
(13) sp (/32): 0x20000508
(14) lr (/32): 0x200000e9
(15) pc (/32): 0x20000180
(16) xPSR (/32): 0x01000000
(17) msp (/32): 0x20000508

Testing results - I2C Testing Sequence
[user@linux python]$./run_i2c_dpi_remote_test.py
=========== I2C DPI Remote Bitbang Test =========
Write access ACKnowledged.
I2C write @ 0x12 = 0xba.
Write access ACKnowledged.
I2C write @ 0x12 = 0xdc.
Read access ACKnowledged.
I2C read @ 0x12 = 0x47.
Read access ACKnowledged.
I2C read @ 0x12 = 0x23.

Conclusions

• Introduce a methodology for pre-FPGA debugging

• Design the architecture for HW/SW co-verification

• Maximize re-use of debug tools and test-cases

• Leverage software development expertise and resources

Questions

