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Introduction

Rapid evolution of ASIC development – design complexity & re-use

Design verification (DV) strategies 

• Must provide best quality, optimum cost/time/resources

Conventional DV approaches

• Waterfall Model, Requirements-driven-flow (RDF) etc.

• Less flexible for changing verification requirements

• Priorities of task execution are already baselined

• May delay sign-off and increase overall cost-factor



Problem Statement

Challenges posed by conventional methods

• Needs stable environment and limited alterations to DV

• Require experienced personnel 

• Limited user involvement at various stages 

• Increased cost, time and resources effort for even small changes

• Progress at end of cycle may be invalidated and discarded

Strong need to define verification work-flow to address above challenges

This will inherently drive verification to be agile



Agile Methodology

• Characteristics of being agile
• Task division into small phases

• Prioritization of task execution

• Continuous collaboration

• Periodic assessments & reviews

• Iterative & incremental value addition

• Visible metrics

• Agile Frameworks: Scrum, Extreme Programming (XP), Kanban etc.



Agile Approaches To ASIC Verification –
A3V Flow

• Identify characteristics of DV

• Select agile methods based on individual 
advantages

• Actuate agile techniques as per scope, 
requirements & resources

A3V 

Combination of various 
agile frameworks 

• Scrum, Kanban, Extreme-Programming (XP) 

• Feature-Driven-Development (FDD)

• Adaptive-Software-Development (ASD)

• Behavioural-Driven-Development (BDD)

Constituent 
frameworks of A3V



A3V Flow



DV Flow Comparison
Conventional Flow A3V Flow

Plan-driven & requirements-oriented Agile & feature-oriented mapped onto requirements

Fixed task priorities throughout execution cycle Ad-hoc task priorities at every stage of execution cycle

Concurrent execution of blocks with specific
features (multi-block basis)

Sequential execution of blocks covering all features
(block-by-block basis)

Limited visibility & clarity due to isolation of
blocks/tasks

Full visibility due to sharing of blocks/tasks & constant
reviews

Frequency of status alignment meetings is low
initially and increases towards the sign-off

Frequency of status alignment meetings is high initially
and decreases to constant value towards sign-off

Non-iterative and non-linear progress which can be
concluded only at the final stage of project

Iterative and incremental progress at every stage
ensures continuous assessment of project status



Use-case example – Memory IP (MIP)
• Development and verification of a user-interface for highly configurable 

and scalable memory subsystem IP

• Configurable features of MIP

• Levels are assigned to each of above features

Clock frequency 
variation

Initialization of 
memory 

address access

Memory type 
ROM/RAM

Algorithms 
SCAN, MARCH, 

READONLY

Memory access  

Sequential / 
Concurrent

Interfaces 

Serial / Parallel



Use-case example – Memory IP (Contd…)



Results
Sprint of 2 weeks for each feature/sub-feature

Overall DV schedule – 20 work 
weeks 

Each stage has individual sign-off 
SO1, SO2… SO(Final)

SOx→ Resource & cost 
optimization

Effective work-load sharing

Less waiting time

Focused efforts → Improved quality

Efficient DV re-use during SOx 
execution



Opportunities Versus Challenges

Opportunities

• Optimum resource utilization

• Code optimization – peer-
reviews & work-sharing

• Adaptable execution

• Tangible deliverables

• High level of confidence

Challenges

• Requires agile friendly design

• Need to resolve dependencies 
during planning phase

• Accurate and precise feature 
classification

• Agile flow awareness



Conclusion
A3V Flow – novel strategy for design verification

Combination of agile frameworks based on individual merits

Feature classification and task prioritization is the key

Encouraging results for a highly configurable and scalable MIP

Optimum execution cost

Enhanced overall quality of verification
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