
Agile Approaches to ASIC Verification (A3V) – A
Novel Agile Flow in Functional Verification
Adithya Rangan CK, Vidyasagar Kantamneni, Vishal Dalal

Infineon Technologies, Bangalore, India

Contents
• Introduction

• Problem Statement

• Agile Methodology

• Agile approaches to ASIC verification (A3V) flow

• Use-case example – Memory IP (MIP)

• Results

• Opportunities versus challenges

• Conclusion

Introduction

Rapid evolution of ASIC development – design complexity & re-use

Design verification (DV) strategies

• Must provide best quality, optimum cost/time/resources

Conventional DV approaches

• Waterfall Model, Requirements-driven-flow (RDF) etc.

• Less flexible for changing verification requirements

• Priorities of task execution are already baselined

• May delay sign-off and increase overall cost-factor

Problem Statement

Challenges posed by conventional methods

• Needs stable environment and limited alterations to DV

• Require experienced personnel

• Limited user involvement at various stages

• Increased cost, time and resources effort for even small changes

• Progress at end of cycle may be invalidated and discarded

Strong need to define verification work-flow to address above challenges

This will inherently drive verification to be agile

Agile Methodology

• Characteristics of being agile
• Task division into small phases

• Prioritization of task execution

• Continuous collaboration

• Periodic assessments & reviews

• Iterative & incremental value addition

• Visible metrics

• Agile Frameworks: Scrum, Extreme Programming (XP), Kanban etc.

Agile Approaches To ASIC Verification –
A3V Flow

• Identify characteristics of DV

• Select agile methods based on individual
advantages

• Actuate agile techniques as per scope,
requirements & resources

A3V

Combination of various
agile frameworks

• Scrum, Kanban, Extreme-Programming (XP)

• Feature-Driven-Development (FDD)

• Adaptive-Software-Development (ASD)

• Behavioural-Driven-Development (BDD)

Constituent
frameworks of A3V

A3V Flow

DV Flow Comparison
Conventional Flow A3V Flow

Plan-driven & requirements-oriented Agile & feature-oriented mapped onto requirements

Fixed task priorities throughout execution cycle Ad-hoc task priorities at every stage of execution cycle

Concurrent execution of blocks with specific
features (multi-block basis)

Sequential execution of blocks covering all features
(block-by-block basis)

Limited visibility & clarity due to isolation of
blocks/tasks

Full visibility due to sharing of blocks/tasks & constant
reviews

Frequency of status alignment meetings is low
initially and increases towards the sign-off

Frequency of status alignment meetings is high initially
and decreases to constant value towards sign-off

Non-iterative and non-linear progress which can be
concluded only at the final stage of project

Iterative and incremental progress at every stage
ensures continuous assessment of project status

Use-case example – Memory IP (MIP)
• Development and verification of a user-interface for highly configurable

and scalable memory subsystem IP

• Configurable features of MIP

• Levels are assigned to each of above features

Clock frequency
variation

Initialization of
memory

address access

Memory type
ROM/RAM

Algorithms
SCAN, MARCH,

READONLY

Memory access

Sequential /
Concurrent

Interfaces

Serial / Parallel

Use-case example – Memory IP (Contd…)

Results
Sprint of 2 weeks for each feature/sub-feature

Overall DV schedule – 20 work
weeks

Each stage has individual sign-off
SO1, SO2… SO(Final)

SOx→ Resource & cost
optimization

Effective work-load sharing

Less waiting time

Focused efforts → Improved quality

Efficient DV re-use during SOx
execution

Opportunities Versus Challenges

Opportunities

• Optimum resource utilization

• Code optimization – peer-
reviews & work-sharing

• Adaptable execution

• Tangible deliverables

• High level of confidence

Challenges

• Requires agile friendly design

• Need to resolve dependencies
during planning phase

• Accurate and precise feature
classification

• Agile flow awareness

Conclusion
A3V Flow – novel strategy for design verification

Combination of agile frameworks based on individual merits

Feature classification and task prioritization is the key

Encouraging results for a highly configurable and scalable MIP

Optimum execution cost

Enhanced overall quality of verification

References
[1] Shinobu Komai, Hiroshi Nakanishi and Hamdani Saidi, “Guidelines for selecting agile development method in system requirements definition”, 7th IEEE International Conference on Control System, Computing and Engineering
(ICCSCE), November 2017, ISBN:978-1-5386-3898-9

[2] Marco Kuhrmann, Paolo Tell, and Regina Hebig, “What makes agile software development agile,” IEEE Transactions on Software Engineering, vol. 1, pp. 1-1, July 2021, ISSN: 1939-3520

[3] Shi Zhong, Chen Liping, and Chen Tian-en, “Agile planning and development methods”, IEEE 3rd International Conference on Computer Research and Development, March 2011, ISBN:978-1-61284-840-2

[4] Wrike, “Agile Methodology Basics - Project Management Guide”, https://www.wrike.com/project-management-guide/agilemethodology-basics, 2009

[5] Mike Beedle, Arie van Bennekum, et. al, "Agile Manifesto and Principles", https://agilemanifesto.org, February 2001

[6] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and agile software development,” WET ICE Proceedings. Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 2003,ISBN:0-7695-1963-6

[7] Yunsup Lee, Andrew Waterman, Henry Cook et. al, “An Agile Approach to building RISC-V Microprocessors IEEE Micro, Vol. 36, Issue.2, March 2016, ISSN: 1937-4143

[8] Luke Collins, “Applying agile techniques to IC design,” https://www.techdesignforums.com/practice/technique/agile-ic-methodology/, June 2015

[9] Neil Johnson and Byran Morris, “A Giant, Baby Step Forward: Agile Techniques for Hardware Design,” http://www.synopsys.com/news/pubs/snug/boston2009/mc3_johnson_paper.pdf, 2009

[10] Paul Cunningham, "Agile Approach to SoC Design Verification", Cadence Design Systems, https://www.eetasia.com/agile-approachto-soc-design-verification, June 2021

[11] Md Shamsur Rahim, AZM Ehtesham Chowdhury, Dip Nandi, Mashiour Rahman, "ScrumFall: A Hybrid Software Process Model", I.J. Information Technology and Computer Science, vol 12, pp 41-48, December 2018

[12] Sergio Marchese, "Formal verification enables Agile RTL development", https://www.techdesignforums.com/practice/technique, January 2014

