DESIGN AND VERIFICATION THE DUCE ONFERENCE AND EXHIBITION

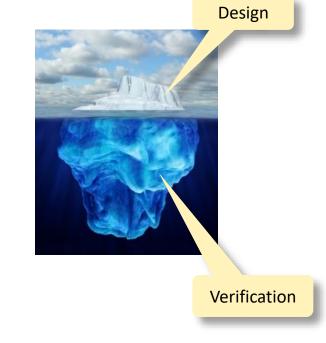
MUNICH, GERMANY DECEMBER 6 - 7, 2022

Improving Simulation Regression Efficiency using a Machine Learning-based Method in Design Verification

Deepak Narayan Gadde, Infineon Technologies Dresden GmbH & Co. KG Sebastian Simon, Infineon Technologies Dresden GmbH & Co. KG Djones Lettnin, Infineon Technologies AG Thomas Ziller, Cadence Design Systems GmbH

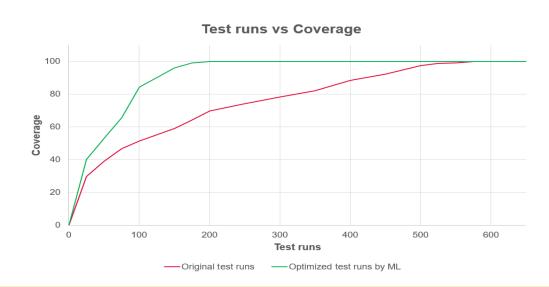
- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Motivation and Problem Statement


- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Verification of Systems on Chip became a time-consuming task

- Designs are becoming more complex, due to
 - Technology scaling: Ability to fabricate more
 - Consumer demands more from a single chip
 - Mixed-signal designs
 - Safety/Security critical devices and more...
- At present, pre-silicon verification typically consumes significantly more effort than design



Money and time are crucial...

- Problem: Huge number of test simulations in the Regression
 - High demand for simulator licenses
 - Long turn-around times
 - Uncertainty in coverage regain

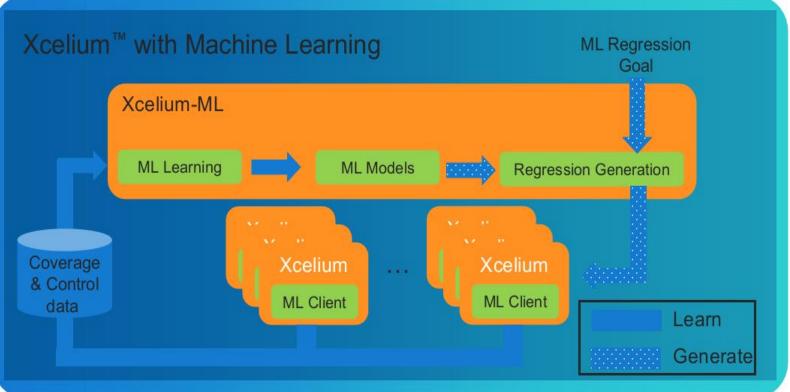
Common Solution used so far - Ranking

Definition: A collection of test-seed pairs of the original regression to reach its achieved coverage

- Pro:
 - Easy
 - built-in (e.g. vManager)
 - Proven technology
- Con:
 - Effectively re-simulation (like directed testing)
 - Exact same coverage as original regression
 - Inability to hit new coverage/ identify new bugs

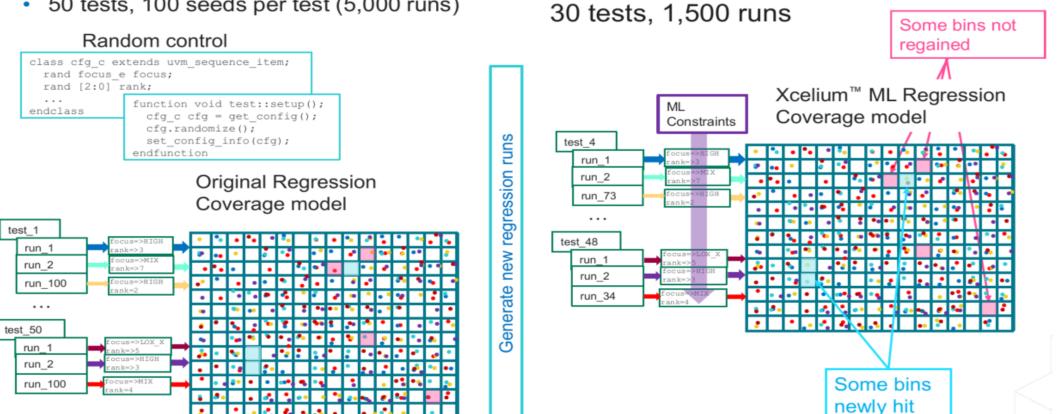
Name	cov_4(Rank)	delta_cov_4(Rank)	Index	Seed
(po filtor)	(no filtor)	(no filtor)	(po filt	
/uart_tests/apb_uart_rx_tx	51.98%	51.98%	12	-1822347563
🔘 /uart_tests/uart_apb_incr_data	52.84%	0.86%	15	-1979615113
/uart_tests/apb_uart_rx_tx	53.23%	0.39%	8	-134134593
🔘 /uart_tests/uart_apb_incr_data	53.39%	0.16%	17	-161380502
/uart_tests/apb_to_uart_istopbit	53.39%	090	1	-429807289
🔘 /uart_tests/apb_to_uart_1stopbit	53.39%	0%	2	-295597031
🔘 /uart_tests/apb_to_uart_1stopbit	53.39%	0%	3	291629003
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	4	157412490
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	5	425841317
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	6	-2057189416
🔘 /uart_tests/apb_to_uart_1stopbit	53.39%	0%	1	805229712
🔘 /uart_tests/apb_to_uart_1stopbit	53.39%	0%	2	-1073811545
🔘 /uart_tests/apb_to_uart_1stopbit	53.39%	0%	3	1610742036
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	4	-805175797
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	5	-268307533
/uart_tests/apb_to_uart_1stopbit	53.39%	0%	6	671173104
/uart_tests/apb_uart_rx_tx	53.39%	0%	7	402738760

No additional coverage contribution, can be neglected for ranked regression


- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Cadence Xcelium ML High Level View

Source: Cadence Design Systems, Inc



Faster Regressions with Xcelium ML

Original Regression

• 50 tests, 100 seeds per test (5,000 runs)

Generated Regression

- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Application on an SoC Design - Overview

- Mixed Signal SoC
- Designed in VHDL, Verilog, SystemVerilog
- UVM (SV) testbench
- 356 Distinct Tests
- \approx 5124 runs in the Regression

Configuration	CPU	Verification IP	Flash	
P1	Yes	No	Simple	
P2	Yes	Yes	Complex	
Р3	Yes	Yes	Simple	
P4	No	No	Complex	
Р5	No	No	Simple	
P6	No	Yes	Complex	
P7	No	Yes	Simple	

Application on an SoC Design – Detailed Results

Configuration	Original Runs	Original Runtime CPU hours	Optimization Runs	Opt. Runtime CPU hours	Compression in Runs		Compression in Runtime
P1	297	0.200	110	0.151	2.70	99.86%	1.32
P2	415	0.562	188	0.337	2.20	101.2%	1.66
РЗ	2959	2.813	786	0.785	3.76	97.96%	3.58
P4	140	0.213	116	0.133	1.20	98.07%	1.60
Р5	1193	1.336	318	0.356	3.75	99.48%	3.75
P6	10	0.007	3	0.003	3.33	98.19%	2.33
Р7	110	0.074	84	0.070	1.30	101.3%	1.05
Total	5124	5.205	1605	1.835	3.19	99.42%	2.83

Application on other Designs

- Microprocessor Digital IP
 - VHDL design
 - UVM-SV testbench
 - Already taped out
 - 260 runs with 26 distinct tests
 - Results (XceliumML)
 - 6x 17x speed-up factor
 - ≈ 99.9% coverage regain

• Radar based SoC

- System Verilog design
- UVM-SV testbench
- Ongoing project
- 25 tests/ 271 runs @ Stage I
- 35 tests/ 301 runs @ Stage II
- Results (XceliumML):
 - 3x speed-up factor
 - Over 100% coverage regain
 - Able to discover more functional bugs

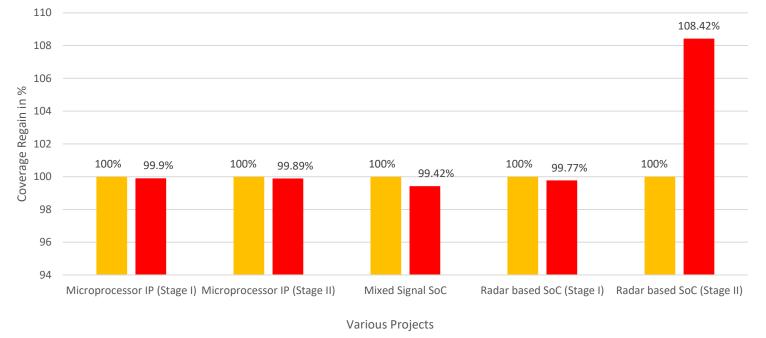
- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Xcelium ML vs Ranking

Xcelium ML

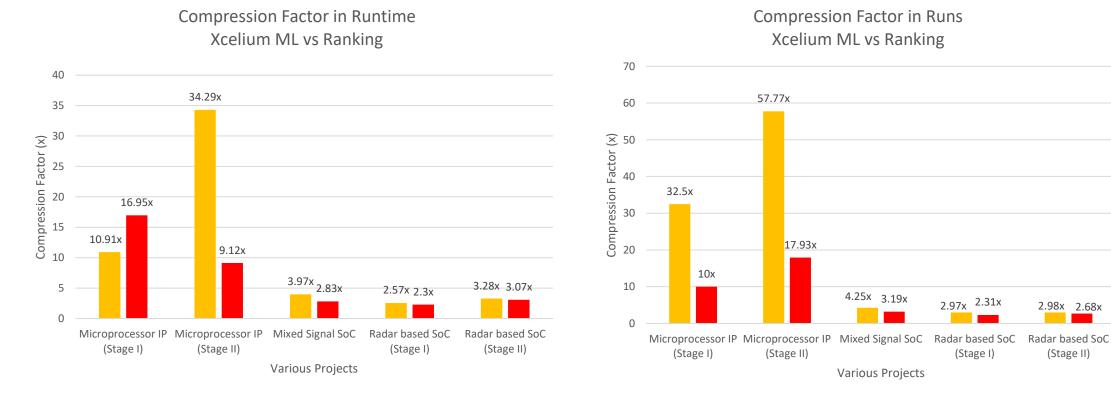
- ML tries to find the correlations between the actions inside the testbench and the coverage results
- The produced regression by ML is randomized in nature
- It can improve/ increase the original coverage
- It can discover new functional bugs that the orig regr did not find

Ranking


- Ranking finds the effective test and seed pairs to reach the same coverage
- Re-simulation of tests → Directed testing
- Inability to exercise new scenarios
 - No new coverage
 - Can not identify the bugs

Xcelium ML vs Ranking

Coverage Regain Xcelium ML vs Ranking

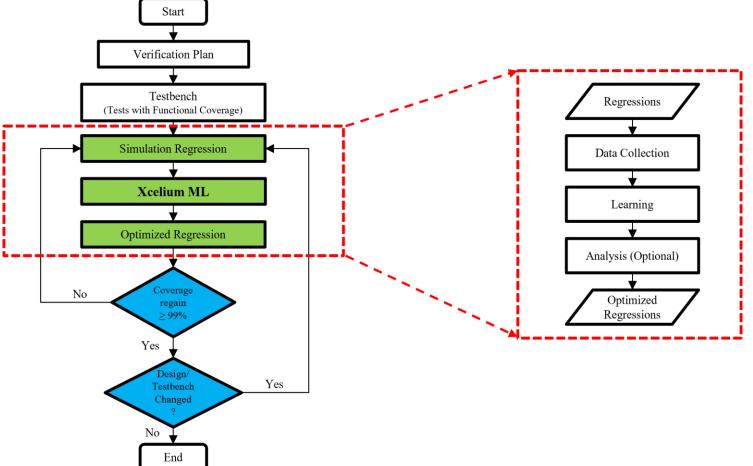


Ranking Xcelium ML

Xcelium ML vs Ranking

Ranking Xcelium ML

SYSTEMS INITIATIVE


(Stage II)

- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Proposed Methodology using Xcelium ML

- Motivation and Problem Statement
- Cadence Xcelium ML
- Application on Designs
- Xcelium ML vs Ranking
- Proposed Methodology
- Summary

Summary

- Out of the box solution with minimal setup
- Time & cost savings during simulation regression
- 3x to 15x speed-up factor
- Generates a compressed regression with random seeds (unlike Ranking)
 - Uncover new functional bugs
 - Might exceed original coverage
- ML learning/ training consumes extra 20% (on average) of the original regression time to produce an optimized regression
- Re-learning required after significant RTL/ TB changes (typically every week)

Thank you.

