

1

Challenges and Solutions for Creating Virtual
Platforms of FPGA and SASIC Designs

Kalen Brunham, Programmable Solutions Group, Intel, Toronto, Canada (kalen.brunham@intel.com)

Jakob Engblom, Software and Advanced Technologies Group, Intel, Stockholm, Sweden
(jakob.engblom@intel.com)

Abstract—Virtual platforms (VPs) built on frameworks like Intel® Simics® software and QEMU are standard for

application-specific integrated circuit (ASIC) designs, achieving concurrent hardware-software development, and software
and integration shift-left. As field programmable gate array (FPGA) and structured ASIC (SASIC) designs are becoming
increasingly complex and include processor cores, designers see the value VPs bring for software development before the
hardware design is complete and for the ability to validate software without needing actual hardware boards. However, the
creation of a VP for an FPGA/SASIC design presents unique challenges, given the inherent flexibility of the hardware and
the existing design workflows. This paper reviews the challenges of creating VPs for these designs and presents tooling and
workflows for FPGA/SASIC customers to create VPs for their designs.

Keywords—FPGA, Structured ASIC, Virtual Platform, Simics

INTRODUCTION

A virtual platform (VP) is a model of a hardware system that can run the same software stacks as the hardware
platform it models [1]. A VP simulates the target processor cores and the rest of the software-visible hardware, where
the underlying simulator software can run on a host computer that is different than the system being modeled. Many
large application-specific integrated circuit (ASIC) engineering companies, including Intel, have adopted VPs as part
of their standard engineering practice [1], since VPs enable software development and test before the hardware design
is finalized, and regression testing of software changes without needing large numbers of physical hardware boards [1].
These companies also use VPs early in the hardware design phase to collect feedback from the software teams, allowing
changes to be easily incorporated into the design and helping to avoid costly discoveries post-silicon.

As illustrated in Figure 1, modern field programmable gate array (FPGA) and structured ASIC (SASIC) [2] systems
have become increasingly complex and commonly include a significant software component. The FPGA chip provides
both fixed and programmable parts. The fixed parts, also known as hard IP, vary greatly between different chips, but

Figure 1 – Generic FPGA/SASIC Architecture.

Board

FPGA Chip
Transceiver

Hard processor system Soft programmable fabric

Signals

Address map

Config

Software

Processor
core

Processor
core

Memory
controller

Interrupt
controller Serial ports

Ethernet
controller

Config Config Config

…

Config Transceiver Config Transceiver Config

DDR
Memory Ethernet I2C SPI …

Connections between blocks (“network-on-chip”, “fabric”, …)

Soft core

Software

Vendor IP

Config

Config

Vendor IP

Config

Vendor IP

Config

Customer
RTL block

Customer
RTL block Config

Vendor IP

Config

Soft core

Software

Config

Transceiver Config

Hard IP shipping as a fixed
part of the FPGA chip

“Soft” IP instantiated in
the programmable fabric

User-provided
configuration

Software

mailto:kalen.brunham@intel.com
mailto:jakob.engblom@intel.com

2

typically include transceivers, memory controllers, network interfaces, and even processor subsystems where the
precise functionality and connections of the hard IP is configurable by the user using vendor supplied IP blocks. The
programmable fabric part is what makes the FPGA into an FPGA, and lets the user instantiate both their own
hardware designs, expressed in a register transfer language (RTL), and vendor-provided soft IP blocks. Software in
these devices can be executing on processors provided in the hard IP of the FPGA, and on processor cores instantiated
in the FPGA fabric.

The combination of hardware design and software design means that FPGA projects increasingly look like ASIC
projects and makes the use of VPs compelling for FPGA/SASIC designs. However, creating VPs for programmable
hardware has some unique challenges compared to building a VP for a standard ASIC, due to the configurable and
flexible nature of FPGAs and SASICs. These challenges can be overcome by leveraging the information already
available in the FPGA/SASIC design tool, as demonstrated in this paper.

USING VIRTUAL PLATFORMS FOR FPGAS

In general, VPs provide a benefit to projects whenever hardware availability is an issue for software developers –
either because the hardware is not yet ready, or because there are limits to the number of hardware units available to
the development teams. In practice, very small FPGA teams, such as only one or two developers, may not use VPs or
even RTL simulation. Such projects can get by using a few commercial hardware development boards, typically one
for each developer. Design changes to either hardware or software are simply deployed and tested on the hardware,
skipping simulation.

However, larger projects, from five developers and up, can typically benefit from decoupling hardware and software
development using VPs. It becomes cost-prohibitive and impractical to provide all developers with development boards.
Larger projects are also more likely to use custom system and board designs where the hardware is not immediately
available, even if the FPGA chips are, and thus require the use of VPs to do pre-silicon (or shift-left) software
development. Furthermore, applying modern software development techniques like agile, continuous integration, and
DevOps assume that test and execution resources can be dynamically managed and used on-demand [3]– which is not
compatible when relying on a fixed number of custom hardware setups.

To support software development and test, VPs have to be fast, which necessitates the use of loosely-timed (LT)
transaction-level modeling (TLM) together with fast instruction-set simulators [1]. There are various alternatives, but
none is as universally practical as the fast LT-TLM VP such as Simics simulator [4] or QEMU [5].

One alternative method to the cost of building an LT-TLM VP is to use host-compiled simulation to run software
independently of hardware, such as the technique described in [6]. However, compared to using a VP, host-compiled
simulation requires changing the source code and introduces an additional build target that needs to be maintained.
Looking at the total cost, maintaining the host-compiled framework might be just as expensive as building a regular VP
since the framework also requires building models of the hardware. Unlike an LT-TLM VP, the host-compiled
simulation means the same source code and binary code cannot be used for testing both on a VP and on the real
hardware.

Another alternative to using an LT-TLM VP is to use a VP-RTL co-simulation, such as [7], where the processor
hard IP of the FPGA is provided as a VP and everything else is simulated in RTL. Such solutions are inherently slow
as they are limited by the speed of the RTL simulation, which is typically a million times slower than TLM. Compiling
RTL into SystemC/C++ code as done by tools like Verilator [8] provides some performance improvements, but still
runs thousands of times slower than a TLM VP and provides limited debuggability given its one-way translation.
Essentially, any solution that relies on the RTL or provides a model built to the same structure as the RTL, such as
structural SystemC models, will be too slow to properly support software development at maximum velocity.

3

Building a VP for just the hard processor IP of the
FPGA helps to some extent. However, it still leaves open
the question of how to model the portions of an FPGA
design implemented in the programmable fabric and the
rest of the programmable hard IP beyond the processor
subsystem. Such limited models also tend to model the
general behavior of the hard processor system, allowing
more software to run than would run on the actual
configuration of the hardware. As a result, negative testing
is not possible, and the behavior might differ in the details
from what would happen on actual hardware. This is
antithetical to the foundational goal of a VP enabling
simulation of the real hardware behavior. Configuring the
VP to match the configuration of the hardware would have
to be done manually by the user, as the vendor would not
know the detailed setup of the user.

It should be noted that VPs do not obviate the need to
test on hardware. Rather, they serve as an extension of the hardware farm. As shown in Figure 2, VPs are typically used
for the first levels of continuous integration loops to provide fast feedback to developers. Once testing is successful on
VP, tests move on to hardware. For this strategy to be efficient, the VP needs to be precise enough to enable both
positive and negative tests – it is not sufficient for a VP to model a superset of the hardware functionality, as that will
tend to hide errors. Critically, there should be no functional difference in the behavior of the software running on a VP
versus the same software running on hardware.

CHALLENGES FOR VIRTUAL PLATFORMS OF FPGA/SASIC DESIGNS

Fact: FPGA teams are smaller than ASIC teams.

Compared to ASIC projects, FPGA-based projects have different economics. The design team for an ASIC project
is typically much larger than for an FPGA project. Since we would expect the relative size of the VP modeling team to
the design team to be about the same (in order to maintain the same level of return-on-investment, ROI), in absolute
terms, the modeling team for an FPGA project should be smaller than for an ASIC. However, the modeling effort is of
similar complexity. Something is needed to improve the productivity of the VP teams in FPGA projects, relative to the
typical techniques used by ASIC VP teams.

Problem: FPGA vendors cannot provide a VP for their chips. Customer needs to create it for their design.

Providing a VP is different for an FPGA/SASIC vendor compared to an ASIC vendor. For an ASIC, a single model
can be built by the vendor and used by multiple customers (since the ASIC design is known and fixed). On the other
hand, for an FPGA/SASIC, each customer’s design is by nature unique. The task of creating a VP for an FPGA/SASIC
design is therefore an activity that must be done by the customer and not the FPGA vendor.

Fact: Vendor-provided IP is highly parameterizable and can dramatically affect the software interface.

Modern FPGA/SASIC designs almost exclusively use vendor-provided IP blocks for the hard IP of the FPGA and
critical portions of their fabric design. The exact parameterization of these IPs is chosen by the customers and can
change as the design evolves due to fitting the design in the target device, or as the requirements of the design change.
These IPs, even the so-called hard IP, are configurable by the user. They are generally much more parameterizable than
the IPs found in ASICs, and the parameterization can drastically change the software interface.

Figure 2 – Continuous Integration flows using virtual platforms.

Build system

Developer writes
new code

CI Loop 1: Unit test

CI Loop 2: Subsystem-level test

CI Loop 3: System-level test (VP)

Good to Deliver

Pre-CI Test

CI Loop 4: System-level test on hardware

Suitable for
testing on
virtual platform

4

As an example, Figure 3 shows the Interval Timer FPGA IP [9] from the IP catalog of the Intel® Quartus® Platform
Designer [10] software and its configuration options. The options affect both the functionality of the hardware and the
register map visible to software. For example, if the counter size option is changed from 32 to 64, then register map
changes as shown in Figure 4. In addition, options such as enabling start/stop control bits impact those bits in the register
map. More complex IPs, like the F-Tile Ethernet Intel FPGA Hard IP [11], have an even greater parameterization space
given the number of different Ethernet modes and IP core variations. A model of such an IP needs to cover all possible
parameterizations and ensure that the model behaves as expected in both positive and negative tests.

Creating models for these vendor IPs can be extremely challenging based on their complexity and may require
significant modeling expertise and internal implementation details to realize. Beyond the modeling skillset challenge,

FPGA vendors do not always document their IPs
with the sufficient level of detail needed for a
customer or a 3rd party to create models of them.
As a result, we assert that only vendors can
reasonably create models for their IPs.

 Problem: The parameters of the VP IPs need
to be easily changeable and in sync with the
hardware design.

Given the relative ease of change and the lack
of fabrication delay in an FPGA design, it is
standard FPGA design practice to have much
larger changes and relatively longer periods of
design change compared to an ASIC design. The
VP therefore needs to be quickly and easily
changed to track the current design state.

Matching the hardware design pretty much requires the VP to be generated from the FPGA design data – doing it
manually is too slow and error-prone.

Problem:
Customer adds their
own IP and wants to
include them in the
model.

In addition to
the vendor IP
components in an

FPGA/SASIC
design, customers

also provide their own hardware block designs, in order to implement custom functions or acceleration. If the customer-
provided blocks are controlled by software, the customer blocks must be included in the VP to ensure that the execution
of the software can be accurately simulated. Thus, the VP design flow must ensure that customer hardware is modeled
in the VP and kept up-to-date with design changes.

LEVERAGING THE FPGA SYSTEM ASSEMBLY TOOL

FPGA system assembly tools, such as Intel Quartus® Platform Designer [10], provide the ability to quickly describe
a complete system including both vendor IPs and customer blocks. The assembly tool captures all the information

Figure 3 : Interval Timer Intel FPGA IP GUI.

 Counter Size == 32 Counter Size == 64

Offset Reg Name Description Reg Name Description

0 status Run[1]|TO[0] status Run[1]|TO[0]

1 control Stop[3]|Start[2]|Cont[1]|ITO[0] control Stop[3]|Start[2]|Cont[1]|ITO[0]

2 periodl Timeout Period [15:0] period_0 Timeout Period [15:0]

3 periodh Timeout Period [31:16] period_1 Timeout Period [31:16]

4 snapl Counter Snapshot [15:0] period_2 Timeout Period [47:32]

5 snaph Counter Snapshot [31:16] period_3 Timeout Period [64:48]

 snap_0 Counter Snapshot [15:0]

 snap_1 Counter Snapshot [31:16]

 snap_2 Counter Snapshot [47:32]

 snap_3 Counter Snapshot [64:48]

Figure 4 : Interval timer register map when used in 32-bit and 64-bit mode.

5

needed to fully describe the hardware setup and software interface of the complete design, including the detailed
configuration of all parts of the system including the memory map, and the connectivity. Today, the assembly tool is
used to generate the RTL output used by the vendor compiler tool chain to create the hardware bitstream.

In our opinion, the answer to creating VPs for FPGA/SASIC designs is to generate the VP from the existing FPGA
design creation and experimentation workflow using enhancements to existing assembly tools like Platform Designer.
As illustrated in Figure 5, a designer using the existing assembly tool to select, parameterize, instantiate, and connect
vendor-provided IPs and their own blocks, would get a VP configuration produced based on the design expressed in
the tool as an additional output.

Automatic VP generation is
practical based on two facts; 1)
most designs rely extensively on
vendor IP blocks for the shell of
their design, and 2) designers use
this dedicated system assembly
tool to build the system. Inside the
existing assembly tool is a library
of IP models provided by the
vendor that can cover most of the
shell for a design. The library can
be augmented to provide both RTL
and VP models for the vendor IP
blocks. The VP models themselves

expose the same parameters as the RTL and these parameters modify the behavior of the model. When the assembly
tool generates the output for an IP instance, it writes a wrapper around the VP IP that specifies all the parameters and
effectively results in a fixed function VP IP model. This generation is equivalent to the existing process that occurs for
generating the RTL.

For customer IP blocks, the assembly tool knows the IP’s memory-mapped addresses and other connections to the
rest of the system. This is sufficient to automatically generate stub models for each of the customer’s IP which can also
be manually extended into fully functional VP models. If the customer supplies a register map for their blocks, it can
also be included in the generated stub model, reducing the work needed to build a functional model.

Since the assembly tool knows the complete system memory map and connectivity of the system, plus the
parameterized vendor IP models and stub models for customer IP, a complete VP can be generated that is faithful to
the FPGA design captured in the assembly tool without any custom modeling on the part of the designer. The generated
system setup follows the structure of the generated RTL, with different types of information described at different levels
of the hierarchy. The top level declares the set of sub-components and how they are connected, while each sub-
component describes a particular instance of an IP block with all its parameters.

Going beyond the FPGA chip, the design captured in the assembly tool also includes information such as external
memory sizes and IO pin assignments. In the hardware, they are needed to correctly interface the FPGA to the rest of
the board. This information can be leveraged to generate a board-level VP configuration that includes external
components and the VP connections required to connect to models of external processor chips and other ASICs.

EXAMPLE: CREATING A VIRTUAL PLATFORM FOR AN FPGA DESIGN

We have implemented a prototype of this concept, using the Intel Quartus® Prime Pro FPGA design tool generating
a VP for the Intel Simics simulator [4]. The prototype generates Python code using the Simics simulator component

Figure 5 – Flow from design to execution platforms

Hardware board

FPGA

Virtual platform

FPGA

Customer IP block

FPGA hardware
designer

FPGA design
physical constraints

FPGA system
assembly tool

FPGA build

VP build

Software
designer

RTL
impl

RTL
impl

VP
model

VP
model

Software
binary

FPGA Design Tool Library

IP Block
IP Block

Vendor IP Block

RTL
impl

VP
model

RTL
impl

RTL
impl

Bitstream

Reg
map

VP
model

Configuration

RTL
impl

Reg
map

Software
stack

Software
build

Software
binary

Software
binary

6

framework to create a simulation configuration. The components can be nested hierarchically as well as connected
laterally, to provide a simulation setup that matches the hardware design (at the TLM level of abstraction). The
components are not active during a simulation, and simply create and configure the set of simulation objects to be used
at runtime. The simulation objects are instances of VP models such as devices, memory maps, processor cores, etc. The
simulation objects are configured at run time or at build time, depending on the nature of the configuration. The
assembly tool maps IP configuration options to Simics simulator configuration attribute values or device model
configurations using during the VP build step.

Using the Platform Designer
assembly tool (part of the Intel
Quartus Prime Pro software), we
created a simple RISC-V processor
system using the existing RTL
design flow. The source code for
this example can be found at [12].
The resulting system as seen in
Platform Designer is shown in
Figure 6 and includes a Nios® V/m
RISC-V processor core, an on-chip
memory, a UART, and two interval
timers. The IP blocks are
instantiated and parameterized in

the tool along with the definition of the connections between the IPs and the system memory map. The generated RTL
hierarchy as seen during the Intel Quartus FPGA compilation flow is shown in Figure 7. The RTL hierarchy is derived
from, and matches, the design as expressed in Platform Designer. The RTL for each of the variations of the IPs in the
system are parameterized as defined in the design captured in Platform Designer.

Using this complete system, we are able to automatically generate parameterized virtual platform models and then
a complete virtual platform system definition. Figure 8 shows the system running in the Simics simulator. The hierarchy

Figure 7 : RTL hierarchy of the example design as seen in the Intel
Quartus software

Figure 8 : Hierarchy of the example design as seen in Simics simulator
– matching the RTL hierarchical structure

Figure 6 : Block diagram of example Nios V/m system.

7

of the simulated system is generated to match the RTL hierarchy. The hierarchy is likely deeper than what you find in
a manually created VP, but the runtime cost of a few extra objects is negligible. The benefit of following the RTL
hierarchy is that it is possible to maintain a one-to-one mapping between simulation components and the IP blocks of
the Platform Designer system, including the structure of the generated VP source code.

Some snippets of the generated Simics simulator system component code are shown in Figure 9. The generator
creates constants for the properties of the system, then writes out code for each instance of an IP model instantiated in
the system. Calls to add_pre_obj() add runtime simulation objects to the setup, while add_component() adds
subsystems. Some subsystem parameters are expressed as configuration attributes on the components, while others are
encoded as constants in the component code. This aligns with the configurability of the hardware system.

When adding objects, some configuration aspects are provided as attribute values, while others are compiled into
the code of the models themselves. In particular, the connections between objects are expressed as attributes. The
address configuration of the FPGA fabric is coded as mappings in memory space objects (see the assignments to
phys_mem in Figure 9). Some object parameters do not make sense to hardcode into the compiled models, such as the
frequency, core ID, and reset vector of a processor (see the assignments to cpu_core attributes in Figure 9).

On the other hand, the choice between 32-bit and 64-bit modes for the timer in Figure 3 makes perfect sense to
handle at model compile time since it has a major impact on the nature of the model – just like it has for the RTL. Figure
10 shows an example of compile-time configuration for the timer_32 VP model (written in the Device Modeling
Language, DML [13]). The parameters shown on the left are generated from the design captured in the assembly tool
and reflect the parameterization of the specific IP variant. The code on the right shows generic configurable code where
behavior and the set of registers vary based on the parameters. The result is an automatically generated VP model that
matches the specific parametrization of the example system and the FPGA design.

CONCLUSIONS

This paper has presented the current challenges in creating VPs for FPGA/SASIC customer designs; the end design
is created by the customer, includes a large amount of vendor-provided configurable IP, and the design itself is expected
to change. While methods currently exist to perform hardware-software co-simulation, they do not deliver on the
promise of a fast TLM-LT VP. To allow the quick creation of a fast TLM-LT VP, we extend an existing vendor tool

class fpgadesign_sys_comp(StandardConnectorComponent):
 _class_desc = "sys component for sys.qsys"
 # Constants from ‘sys.qsys’
 CLOCK_IN_FREQ_MHZ = 100.0

 RAM_BASE_ADDRESS = 0x00000000
 RAM_ADDRESS_SPAN = 0x00049400

 # [...]

 def add_objects(self):
 # Instantiate 'cpu' block from its own component
 self.add_component(
 "cpu", "fpgadesign_cpu_comp",
 # Pass down the processor core frequency to the sub-component
 [["freq_mhz", self.CLOCK_IN_FREQ_MHZ]]
)
 cpu_inst_core = self.get_slot("cpu.hart")
 # Retrieve a reference to the processor memory map
 cpu_inst_phys_mem = self.get_slot("cpu.phys_mem")

 # Instantiate 'ram' block from its component
 self.add_component("ram", "fpgadesign_ram_comp", [])
 ram_inst = self.get_slot("ram.ram")
 # Map the ram into the processor’s memory map
 # By appending new mappings to the map created in the right-hand code
 cpu_inst_phys_mem.map.append(
 [
 self.RAM_BASE_ADDRESS, ram_inst,
 0, 0, self.RAM_ADDRESS_SPAN,
]
)
 # [...]

class fpgadesign_cpu_comp(StandardConnectorComponent):
 _class_desc = "Nios Vm CPU from cpu.ip (intel_niosv_m)"
 # Constants from ‘cpu.ip’
 TIMER_SW_AGENT_BASE_ADDRESS = 0x00090000
 TIMER_SW_AGENT_ADDRESS_SPAN = 0x00000040
 CPU_RESET_VECTOR = 0x00000000
 CPU_PC = 0x00000000

 # [...]

 def add_objects(self):
 timer = self.add_pre_obj(
 "timer_module", "nios_v_timer",
 freq_mhz=self.timebase_freq_mhz.val
)
 phys_mem = self.add_pre_obj("phys_mem", "memory-space")
 cpu_core = self.add_pre_obj(
 "hart",
 "riscv-nios-v-m",
 # Configuring the processor frequency from dynamic parameter
 freq_mhz=self.freq_mhz.val,
 # Connections to other objects
 physical_memory = phys_mem,
 clint = timer,
)
 timer.hart = cpu_core
 # CPU core parameters fixed by the IP component parameters
 cpu_core.mhartid = 0
 cpu_core.reset_vector = self.CPU_RESET_VECTOR
 cpu_core.pc = self.CPU_RESET_VECTOR
 # Initial memory map contents
 phys_mem.map = [
 [
 self.TIMER_SW_AGENT_BASE_ADDRESS,[timer, "regs"],
 0, 0, self.TIMER_SW_AGENT_ADDRESS_SPAN,
]
]
 # [...]

Figure 9 : Excerpts from the Simics simulator component code for the example

8

chain to automatically generate VP configurations that match the hardware configuration already described in the tool.
The solution enables FPGA/SASIC projects to create and use VPs that match their hardware designs using the existing
FPGA design tool flow, without massive costs for manual VP coding.

REFERENCES
[1] D. Aarno and J. Engblom, Software and system development using virtual platforms: Full-system simulation with Wind River Simics,

Waltham, MA : Elsevier, Morgan-Kaufmann, 2015.
[2] H. K. Phoon, M. Yap and C. K. Chai, "A Highly Compatible Architecture Design for Optimum FPGA to Structured-ASIC Migration," 2006

IEEE International Conference on Semiconductor Electronics, 2006, pp. 506-510.
[3] J. Engblom. “Continuous Integration for Embedded Systems using Simulation”, Embedded World 2015 Congress, Germany, 2015.
[4] The Intel® Simics® Simulator Public Release, https://developer.intel.com/simics-simulator
[5] F. Bellard, "QEMU a Fast and Portable Dynamic Translator", Proceedings of USENIX Annual Technical Conference, pp. 41-46, June 2005.
[6] Intel Corp., “FPGA Soft Processor Unit Test Example Design.” https://github.com/intel/fpga-soft-processor-unit-test, August 2022.
[7] Xilinx Inc., Versal ACAP Design Guide, UG1273, v2022.1, 2022.
[8] Verilator homepage, https://veripool.org/verilator/
[9] Intel Corp., Embedded Peripherals IP User Guide, UG 01085, v2022.06.21, June 2022.
[10] Intel Corp., Intel Quartus Prime Pro Edition User Guide: Platform Designer, UG 683609, v2022.06.20, June 2022.
[11] Intel Corp., F-Tile Ethernet Intel FPGA Hard IP User Guide, Section 8.1, UG 20313, v2022.06.20, June 2022.
[12] Intel Corp., “Simics Simulator for Intel FPGA Example Designs.” https://github.com/intel/simics-fpga-examples, unpublished.
[13] Device Modeling Language, https://github.com/intel/device-modeling-language

dml 1.4;

device fpgadesign_timer_32;

param desc = "Interval Timer Intel FPGA IP ‘timer_32’";

// [...]

// Constants for model parameters from 'timer_32.ip'
// Controls the behavior of the generic code on the right
param counter_reload_val = 128;
param counter_size = 32;
param no_start_stop_bits = false;
param fixed_period = false;
param readable_snapshot = true;
param system_reset_on_timeout = false;
param interrupts_enabled = true;

// [...]

// Generic model code that has different behavior based on parameters
bank regs {
 param register_size = 2;

 register status @ 0x00 "Status regtest" {
 field reseved @ [15:2] is (unimpl);
 field run @ [1] is (read_only);
 field to @ [0] is (read, write);
 }
 register control @ 0x02 "Control register" {
 field reseved @ [15:4] is (unimpl);
 #if (no_start_stop_bits) {
 field stop @ [3] is (unimpl);
 #if (system_reset_on_timeout) {
 field start @ [2] is (read, write);
 } #else {
 field start @ [2] is (unimpl);
 }
 } #else {
 field stop @ [3] is (read, write);
 field start @ [2] is (read, write);
 }
 field cont @ [1] is (read, write);
 field ito @ [0] is (read, write);

 }

 #if (counter_size == 32) {
 register period[i < counter_size/8] @ ((0x04 << 2) + i*2) is (read, write) "Timeout Period";

 #if (readable_snapshot) {
 register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (read, write) "Counter Snapshot";
 } #else {
 register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (unimpl) "Counter Snapshot";
 }
 } #else {
 register period[i < counter_size/8] @ ((0x04 << 2) + i*2) is (read, write) "Timeout Period";

 #if (readable_snapshot) {
 register snap[i < counter_size/8] @ ((0x0C << 2) + i*2) is (read, write) "Counter Snapshot";
 } #else {
 register snap[i < counter_size/8] @ ((0x0C << 2) + i*2) is (unimpl) "Counter Snapshot";
 }
 }
}

Figure 10 : Excerpts from the configurable timer model source code for the timer_32 variant.

https://developer.intel.com/simics-simulator
https://github.com/intel/fpga-soft-processor-unit-test
https://veripool.org/verilator/
https://github.com/intel/simics-fpga-examples
https://github.com/intel/device-modeling-language

	Introduction
	Using virtual platforms for FPGAs
	Challenges for virtual platforms of FPGA/SASIC designs
	Leveraging the FPGA System Assembly Tool
	Example: Creating a Virtual Platform for an FPGA design
	Conclusions
	References

