
Challenges and Solutions for Creating Virtual
Platforms of FPGA and SASIC Designs

Kalen Brunham and Jakob Engblom, Intel Corp.

What is a Virtual Platform?
• A model of a hardware (HW) system (board) that can run the

same software (SW) binary as the actual HW
• Simulates the processor cores and SW visible HW peripherals
• Simulator application can run on a different host processor type than

the system being modeled
• Common VP technologies include the Simics® simulator, QEMU, etc.

• A Virtual Platform typically includes:
• Instruction set simulator (ISS) for the processor cores
• LT-TLM models for each peripheral in the system
• LT-LM models for all board level components
• Infrastructure to connect models and ISS together and facilitate

debug of code running on the ISS

RISC-V*
CPU

RAM Timer Crypto

AXI

Real HW

RISC-V CPU
(ISS)

RAM
(model)

Timer
(model)

Crypto
(model)

AXI

Virtual Platform
*Other names and brands may be claimed as the property of others

VP Value Proposition
• VPs enable SW development and test before

HW is available and before testing on HW
• Enables SW shift-left for development and feedback
• Removes the need for large board farms for testing

and augments board farm purpose

• Initial testing can be done using a VP before
running tests on HW

• Requires sufficient detail of the VP so the same SW
binary can be used on the VP and on the actual HW

• Use of VPs is standard at many large companies

Build system

Developer writes
new code

CI Loop 1: Unit test

CI Loop 2: Subsystem-level test

CI Loop 3: System-level test (VP)

Good to Deliver

Pre-CI Test

CI Loop 4: System-level test on hardware

Suitable for
testing on
virtual platform

What is an FPGA?
(Field-Programmable Gate Array)

• FPGA is a semiconductor device where the
end function is defined after manufacturing

• Vendors provides “blank” devices and complete
toolchains for use in targeting their devices

• Customers create the end design

• Devices provide many features hard and soft
which can be used in a customer design

• Vendors typically provide IP for interfaces,
accelerators and processors

• Customers choose which IPs, and their exact
functionality

• Structured ASICs (SASICs) share many of
these same properties

FPGA Engagement Model

What vendors provide:
Blank unprogrammed FPGA

What customer want:
Digital system implemented
in an FPGA

?

FPGA Engagement Model

What vendors provide:
Blank unprogrammed FPGA

What customer want:
Digital system implemented
in an FPGA

FPGA Design Tools (Quartus):
Creates a legal mapping of the
input design on the target device
to legally configure all blocks in
the FPGA

Design files and constraints (Customer)

Chip
definition

Bitstream

FPGA Intellectual Property Block (IP) Parameterization
XC

VR
EM

IF
HP

S

There is an IP Catalog of
available IPs

Customers pick parameters Generates RTL that can go through
FPGA toolchain or RTL simulation

FPGA System Assembly Tools

• Customers can instantiate multiple
different IPs and then connect them
together in their overall system

• Assembly tool used to capture the
connectivity and memory map

• The system level, and each IP instance,
generates RTL for consumption by
downstream tools

• Customers come back to the system
assembly tool if system properties or IP
parameters need to be changed

• Ie. legality, timing, requirements change
Address Span

FPGA/SASIC design
• Modern designs are increasingly complex and commonly include a SW component

Board

FPGA Chip
Transceiver

Hard processor system Soft programmable fabric

Signals

Address map

Config

Software

Processor
core

Processor
core

Memory
controller

Interrupt
controller Serial ports

Ethernet
controller

Config Config Config

…

Config Transceiver Config Transceiver Config

DDR
Memory Ethernet I2C SPI …

Connections between blocks (“network-on-chip”, “fabric”, …)

Soft core

Software

Vendor IP

Config

Config

Vendor IP

Config

Vendor IP

Config

Customer
RTL block

Customer
RTL block Config

Vendor IP

Config

Soft core

Software

Config

Transceiver Config

Hard IP shipping as a fixed
part of the FPGA chip

“Soft” IP instantiated in
the programmable fabric

User-provided
configuration

Software

Challenges for VP with FPGA/SASIC designs
• Unlike for “fixed” ASIC, FPGA vendors cannot create a

ready-made VP since customer creates end design
• Customers must create based on their specific design

• Vendor IP is highly parameterizable, parameters can
affect SW interface

• Parameters of the IP need to be easily changeable and
in-sync with the HW design

• Customers add their own IP and want it in the VP
• FPGA teams are smaller than ASIC teams

• Relative modeling to design size means smaller number of
modelers but similar complexity

What customer want:
Virtual platform of their
digital system

SW Interface Impact of IP Parameterization

• Simple Timer from Quartus
• Small number of IP parameters

• Large potential impact to SW interface
• Impact of parameterization to more complex IPs

even larger

• Expectation for change during design

Counter Size == 32 Counter Size == 64

Alternatives to VP

• Host compiled simulation
• Make C/C++ models for HW
• Requires separate build and hardware abstraction layer

• VP-Register Transfer Level (RTL) co-simulation
• Enables use of RTL as opposed to creating a model
• Significantly slower than a complete TLM VP

• Superset model for hard processor only
• Remove some parameterization from the models of the HPS
• Helpful but limiting for fabric design and other peripheral IPs

• No alternative matches the LT-TLM Virtual Platform

RISC-V*
CPU (ISS)

RAM
(model)

Timer
(model)

AXI

Crypto

IPC

RTL Simulator

Virtual Platform

*Other names and brands may be claimed as the property of others

Superset Model for FPGA-SOC
• Most common VP solution for HPS of FPGAs today
• Vendor creates VP for generic HPS parameterization

• Ignores certain legality or connectivity not actually possible
• Create generic memory model for fabric connectivity or example

design

• Superset Hard Processor System (HPS) model prevents use
of negative testing

• Peripherals not connected may still function in VP

• Not practical for soft processors
• Processor, peripherals, and connectivity parameterized

• Does not extend to parameterizable interface IP
• No superset model equivalent Agilex Golden Hardware Reference

Design (GHRD)

Leverage FPGA Assembly Flow for VP

• We believe answer to creating VPs for FPGA/SASIC designs is to generate the VP
from the existing FPGA/SASIC workflow

• Enhance existing tools to generate parameterized VP models in addition to RTL

• Automatic VP generation is practical due to:
1. Most designs rely on vendor IP for the shell of their design
2. Designers use the vendor assembly tools to build portions of their designs, especially the

processor-based systems
3. Assembly tools offer a library of IPs

• Customer RTL can be initially represented as stub models
• Customer RTL can be left as black box models or augmented to have side affects

Proposed VP Generation Flow

Hardware board

FPGA

Virtual platform

FPGA

Customer IP block

FPGA hardware
designer

FPGA design
physical constraints

FPGA system
assembly tool

FPGA build

VP build

Software
designer

RTL
impl

RTL
impl

VP
model

VP
model

Software
binary

FPGA Design Tool Library

IP Block
IP Block

Vendor IP Block

RTL
impl

VP
model

RTL
impl

RTL
impl

Bitstream

Reg
map

VP
model

Configuration

RTL
impl

Reg
map

Software
stack

Software
build

Software
binary

Software
binary

Same binary

Prototype: Automatic Creation of a Simics VP
• Example design connecting a Nios V/m CPU, RAM, JTAG UART, and 2 timers

• Design captured using Quartus Platform Designer
• RTL generation produces RTL for each IP in system and the system itself
• Simics generation produces DML and Python for each IP and the system

• Simics VP generation from existing design capture tool and workflow
• Does not require use of any new FPGA design tool

Generated component
class fpgadesign_cpu_comp(StandardConnectorComponent):

_class_desc = "Nios Vm CPU from cpu.ip (intel_niosv_m)"
Constants from ‘cpu.ip’
TIMER_SW_AGENT_BASE_ADDRESS = 0x00090000
TIMER_SW_AGENT_ADDRESS_SPAN = 0x00000040
CPU_RESET_VECTOR = 0x00000000
CPU_PC = 0x00000000
[...]
def add_objects(self):

timer = self.add_pre_obj(
"timer_module", "nios_v_timer",
freq_mhz=self.timebase_freq_mhz.val

)
phys_mem = self.add_pre_obj("phys_mem", "memory-space")
cpu_core = self.add_pre_obj("hart","riscv-nios-v-m",
[...]

CPU core parameters fixed by the IP component parameters
cpu_core.mhartid = 0
cpu_core.reset_vector = self.CPU_RESET_VECTOR
cpu_core.pc = self.CPU_RESET_VECTOR

Initial memory map contents
phys_mem.map = [

[
self.TIMER_SW_AGENT_BASE_ADDRESS,[timer, "regs"],
0, 0, self.TIMER_SW_AGENT_ADDRESS_SPAN,
]

]
[...]

• Components used for system and
subsystems

• Generated component
• Instantiates each model and system level

parameters
• Instantiates memory map for the system

and connectivity between models

• Generated code may add additional
hierarchy nodes vs naïve manual VP

• Benefit is match to the RTL and comes
with minimal runtime cost

Generated Models
• In general, each IP in the system is

implemented as a model in the VP
• Model created using compile time

configuration based on IP parameters
• Like RTL where parameters can have a

large impact on the functionality

• Generation of IP creates wrapper for
implementation code that defines
parameters

bank regs {
param register_size = 2;

register control @ 0x02 "Control register" {
field reseved @ [15:4] is (unimpl);
#if (no_start_stop_bits) {

field stop @ [3] is (unimpl);
#if (system_reset_on_timeout) {

field start @ [2] is (read, write);
} #else {

field start @ [2] is (unimpl);
}

} #else {
field stop @ [3] is (read, write);
field start @ [2] is (read, write);

}
field cont @ [1] is (read, write);
field ito @ [0] is (read, write);

}
#if (counter_size == 32) {

register period[i < counter_size/8] @ ((0x04 << 2) + i*2) is (read, write);
#if (readable_snapshot) {

register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (read, write);
} #else {

register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (unimpl);
}

…

Prototype: Result
• Design captured in the FPGA assembly tool produces RTL and matching VP

• Nested hierarchy that matches the HW design
• Same SW binary used in HW can be used on generated VP

RTL Hierarchy Simics HierarchyVendor Assembly Tool

Summary
• Key challenges in creating VPs for FPGA/SASIC designs are:

• The end design is created by the customer
• Design includes a large amount of vendor-provided configurable IP
• IP parameterization can have large impact to SW visible interfaces

• VP alternatives such as RTL-VP co-simulation and superset models exist, but they
do not deliver on the promise of a fast TLM-LT VP

• We have extended an existing vendor tool chain to automatically generate VP
configurations that match the captured hardware design

• This solution enables FPGA/SASIC projects to create VPs that match their HW
design using existing FPGA design tool flows, without manual VP coding

Questions?

End

	Challenges and Solutions for Creating Virtual Platforms of FPGA and SASIC Designs
	What is a Virtual Platform?
	VP Value Proposition
	What is an FPGA?�(Field-Programmable Gate Array)
	FPGA Engagement Model
	FPGA Engagement Model
	FPGA Intellectual Property Block (IP) Parameterization
	FPGA System Assembly Tools
	FPGA/SASIC design
	Challenges for VP with FPGA/SASIC designs
	SW Interface Impact of IP Parameterization
	Alternatives to VP
	Superset Model for FPGA-SOC
	Leverage FPGA Assembly Flow for VP
	Proposed VP Generation Flow
	Prototype: Automatic Creation of a Simics VP
	Generated component
	Generated Models
	Prototype: Result
	Summary
	Questions?
	End

