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What is a Virtual Platform?
• A model of a hardware (HW) system (board) that can run the 

same software (SW) binary as the actual HW
• Simulates the processor cores and SW visible HW peripherals
• Simulator application can run on a different host processor type than 

the system being modeled
• Common VP technologies include the Simics® simulator, QEMU, etc.

• A Virtual Platform typically includes:
• Instruction set simulator (ISS) for the processor cores
• LT-TLM models for each peripheral in the system 
• LT-LM models for all board level components
• Infrastructure to connect models and ISS together and facilitate 

debug of code running on the ISS
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VP Value Proposition
• VPs enable SW development and test before 

HW is available and before testing on HW
• Enables SW shift-left for development and feedback
• Removes the need for large board farms for testing 

and augments board farm purpose

• Initial testing can be done using a VP before 
running tests on HW

• Requires sufficient detail of the VP so the same SW 
binary can be used on the VP and on the actual HW

• Use of VPs is standard at many large companies
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What is an FPGA?
(Field-Programmable Gate Array)

• FPGA is a semiconductor device where the 
end function is defined after manufacturing

• Vendors provides “blank” devices and complete 
toolchains for use in targeting their devices

• Customers create the end design

• Devices provide many features hard and soft 
which can be used in a customer design

• Vendors typically provide IP for interfaces, 
accelerators and processors

• Customers choose which IPs, and their exact 
functionality

• Structured ASICs (SASICs) share many of 
these same properties



FPGA Engagement Model

What vendors provide:
Blank unprogrammed FPGA

What customer want:
Digital system implemented 
in an FPGA

?



FPGA Engagement Model

What vendors provide:
Blank unprogrammed FPGA

What customer want:
Digital system implemented 
in an FPGA
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FPGA Intellectual Property Block (IP) Parameterization
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FPGA System Assembly Tools

• Customers can instantiate multiple 
different IPs and then connect them 
together in their overall system

• Assembly tool used to capture the 
connectivity and memory map

• The system level, and each IP instance, 
generates RTL for consumption by 
downstream tools

• Customers come back to the system 
assembly tool if system properties or IP 
parameters need to be changed

• Ie. legality, timing, requirements change
Address Span



FPGA/SASIC design
• Modern designs are increasingly complex and commonly include a SW component
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Challenges for VP with FPGA/SASIC designs
• Unlike for “fixed” ASIC, FPGA vendors cannot create a 

ready-made VP since customer creates end design
• Customers must create based on their specific design

• Vendor IP is highly parameterizable, parameters can 
affect SW interface

• Parameters of the IP need to be easily changeable and 
in-sync with the HW design

• Customers add their own IP and want it in the VP
• FPGA teams are smaller than ASIC teams

• Relative modeling to design size means smaller number of 
modelers but similar complexity

What customer want:
Virtual platform of their
digital system



SW Interface Impact of IP Parameterization 

• Simple Timer from Quartus
• Small number of IP parameters

• Large potential impact to SW interface
• Impact of parameterization to more complex IPs 

even larger

• Expectation for change during design

Counter Size == 32 Counter Size == 64



Alternatives to VP

• Host compiled simulation
• Make C/C++ models for HW
• Requires separate build and hardware abstraction layer

• VP-Register Transfer Level (RTL) co-simulation
• Enables use of RTL as opposed to creating a model
• Significantly slower than a complete TLM VP

• Superset model for hard processor only
• Remove some parameterization from the models of the HPS
• Helpful but limiting for fabric design and other peripheral IPs

• No alternative matches the LT-TLM Virtual Platform
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Superset Model for FPGA-SOC
• Most common VP solution for HPS of FPGAs today
• Vendor creates VP for generic HPS parameterization

• Ignores certain legality or connectivity not actually possible
• Create generic memory model for fabric connectivity or example 

design

• Superset Hard Processor System (HPS) model prevents use 
of negative testing

• Peripherals not connected may still function in VP

• Not practical for soft processors
• Processor, peripherals, and connectivity parameterized

• Does not extend to parameterizable interface IP
• No superset model equivalent Agilex Golden Hardware Reference 

Design (GHRD)



Leverage FPGA Assembly Flow for VP

• We believe answer to creating VPs for FPGA/SASIC designs is to generate the VP 
from the existing FPGA/SASIC workflow

• Enhance existing tools to generate parameterized VP models in addition to RTL

• Automatic VP generation is practical due to:
1. Most designs rely on vendor IP for the shell of their design
2. Designers use the vendor assembly tools to build portions of their designs, especially the 

processor-based systems
3. Assembly tools offer a library of IPs

• Customer RTL can be initially represented as stub models
• Customer RTL can be left as black box models or augmented to have side affects



Proposed VP Generation Flow
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Prototype: Automatic Creation of a Simics VP
• Example design connecting a Nios V/m CPU, RAM, JTAG UART, and 2 timers

• Design captured using Quartus Platform Designer
• RTL generation produces RTL for each IP in system and the system itself
• Simics generation produces DML and Python for each IP and the system

• Simics VP generation from existing design capture tool and workflow
• Does not require use of any new FPGA design tool



Generated component
class fpgadesign_cpu_comp(StandardConnectorComponent):

_class_desc = "Nios Vm CPU from cpu.ip (intel_niosv_m)"
# Constants from ‘cpu.ip’
TIMER_SW_AGENT_BASE_ADDRESS = 0x00090000
TIMER_SW_AGENT_ADDRESS_SPAN = 0x00000040
CPU_RESET_VECTOR = 0x00000000
CPU_PC = 0x00000000
# [...]
def add_objects(self):

timer = self.add_pre_obj(
"timer_module", "nios_v_timer",
freq_mhz=self.timebase_freq_mhz.val

)
phys_mem = self.add_pre_obj("phys_mem", "memory-space")
cpu_core = self.add_pre_obj("hart","riscv-nios-v-m",
# [...]

# CPU core parameters fixed by the IP component parameters
cpu_core.mhartid = 0
cpu_core.reset_vector = self.CPU_RESET_VECTOR
cpu_core.pc = self.CPU_RESET_VECTOR

# Initial memory map contents
phys_mem.map = [

[
self.TIMER_SW_AGENT_BASE_ADDRESS,[timer, "regs"],
0, 0, self.TIMER_SW_AGENT_ADDRESS_SPAN,
]

]
# [...]

• Components used for system and 
subsystems

• Generated component
• Instantiates each model and system level 

parameters
• Instantiates memory map for the system 

and connectivity between models

• Generated code may add additional 
hierarchy nodes vs naïve manual VP

• Benefit is match to the RTL and comes 
with minimal runtime cost



Generated Models
• In general, each IP in the system is 

implemented as a model in the VP
• Model created using compile time 

configuration based on IP parameters
• Like RTL where parameters can have a 

large impact on the functionality

• Generation of IP creates wrapper for 
implementation code that defines 
parameters

bank regs {
param register_size = 2;

register control @ 0x02 "Control register" {
field reseved @ [15:4] is (unimpl);
#if (no_start_stop_bits) {

field stop @ [3] is (unimpl);
#if (system_reset_on_timeout) {

field start @ [2] is (read, write);
} #else {

field start @ [2] is (unimpl);
}

} #else {
field stop @ [3] is (read, write);
field start @ [2] is (read, write);

}
field cont @ [1] is (read, write);
field ito @ [0] is (read, write);

}
#if (counter_size == 32) {

register period[i < counter_size/8] @ ((0x04 << 2) + i*2) is (read, write);
#if (readable_snapshot) {

register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (read, write);
} #else {

register snap[i < counter_size/8] @ ((0x08 << 2) + i*2) is (unimpl);
}

…



Prototype: Result
• Design captured in the FPGA assembly tool produces RTL and matching VP

• Nested hierarchy that matches the HW design
• Same SW binary used in HW can be used on generated VP

RTL Hierarchy Simics HierarchyVendor Assembly Tool



Summary
• Key challenges in creating VPs for FPGA/SASIC designs are:

• The end design is created by the customer
• Design includes a large amount of vendor-provided configurable IP
• IP parameterization can have large impact to SW visible interfaces

• VP alternatives such as RTL-VP co-simulation and superset models exist, but they 
do not deliver on the promise of a fast TLM-LT VP

• We have extended an existing vendor tool chain to automatically generate VP 
configurations that match the captured hardware design 

• This solution enables FPGA/SASIC projects to create VPs that match their HW 
design using existing FPGA design tool flows, without manual VP coding



Questions?
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