

1

Modelling of UVC Monitor Class as a Finite State

Machine for a Packet-Based Interface

Djordje Velickovic, Verification Engineer, Veriest Solutions, Nis, Serbia (djordjev@veriests.com)

Milos Mitic, Verification Engineer, Veriest Solutions, Belgrade, Serbia (milosmi@veriests.com)

Abstract— This paper intends to present the advantages of modelling standard UVC monitor class for packet-based

interface as a finite state machine. It will do so by explaining in depth, the concept of UVC monitor class using the FSM

model on an open-source Ethernet core IP TX interface. It compares it to a traditionally coded monitor class with

emphasis on the advantages of the proposed solution in debugging such interface and coding of protocol violation

checkers. It also shows that all these advantages are achieved without adding degradation in CPU usage percentage

and simulation time.

Keywords—UVM, Monitor, Packet-based interface, Finite State Machine, Ethernet, Debug

I. INTRODUCTION

The development of good quality verification components and IPs are usually taking substantial resources

during the verification process on a wide range of projects. Although the introduction of verification methodologies

over the years standardized the process for VIP development, it is still, more than often, crucial to allocate a sizeable

amount of time (or resources) for this purpose in project planning. A cornerstone in a development process of a

reliable and capable Verification IP will be, in most cases, proper monitor modelling.

To create a monitor which covers the functionality of an interface which is being verified in the best way

possible and to compliment that with objective needs for a project in progress, can be quite a serious task. Modelling

of a UVC monitor class can be particularly challenging for packet-based interfaces. This comes from two major

problems in the monitoring of the packet-based interface. A packet of such an interface will usually be comprised

of multiple frames and each frame will contain multiple chunks of data. This can result in very long packets, where

data carries different information based on its place in the packet. In parallel to monitoring the data and placing it

in the correct frame of the packet, a verification engineer who is developing the monitor needs to pay extra attention

to interface signals behavior during the valid packet transfer and out of it. The effort needed for the development

of a proper monitor of packet-based interface scales immensely with packet complexity and length.

The proposed solution for a Modelling of a UVC Monitor Class as a Finite State Machine for a Packet-Based

interface aims to standardize the coding process of such monitor class and therefore shortens the development time

needed for its completion (especially for engineers who are lacking experience working with packet-based

interfaces). Additionally, this approach should also shorten the time used to debug potential issues found in a

module being verified. It gives an engineer an extra tool to work with as an FSM model of the packet can help in

pinpointing the issue in the erroneous packet.

II. CONCEPT OF MODELLING OF UVC MONITOR CLASS AS A FINITE STATE MACHINE FOR A PACKET-BASED

INTERFACE

The concept relies on the fact that packets for interfaces in question, by definition, have multiple frames (header,

payload, preamble...). The idea behind this implementation is to introduce a variable into the monitor of an

enumerated type defined to represent each of the packet frames definition plus the IDLE state which is set as default

and means that there is no valid packet transfer on the interface. When the monitor detects that the packet was

started it will change the value of the variable to match the start of the packet frame. In the same way, each frame

of the packet will be modelled with an assigned value to a variable that matches. State-jumping will completely

mimic standard finite state machine implementation with case structure (see “Figure 1- Case Structure of FSM

Monitor and Packet Frames”) and added functionality for each defined state. As well, in each state, a condition

2

needs to be met, if the flow can progress to the next frame in the packet. When a packet reaches the end of the

frame, the FSM variable will be set to the IDLE state and the item which was populated through all frames of the

packet with appropriate data collected from the physical interface will be ready for use. Once the variable is in the

IDLE state it will wait for the start frame conditions of another frame to start the cycle again.

Figure 1 – Case Structure of FSM Monitor and Packet Frames

The greatest benefit of implementing the monitor this way comes with the simplicity of coding the protocol

checkers. Once the packet state is modelled correctly, part of the monitor dedicated to protocol violation checks

just needs to track the activities on each of the respective signals of the interface in parallel. The idea is to create

independent processes which will be tracking changes of signal values on the interface. When a change in signal

value is detected it is compared against the modelled value of the packet frame and then checked if the detected

transition is allowed by interface definition.

Also, debugging is an important benefit of implementing the UVC monitor utilizing the FSM concept. When

dealing with complex and long packets usually is not easy to understand where the potential problem actually

occurred and an engineer who is debugging the interface behavior will need deep knowledge of interface

functionality to be proficient in this process. The option of having the FSM model of the packet as a debug aid will

allow engineers with limited knowledge of interface functionality to find the issue in a faulty packet.

III. IMPLEMENTATION

Following implementation of UVC monitor class as an FSM is done using UVM[1]. This means that the monitor

in question is functioning as a part of the agent developed according to the UVM and is intended to be used in a

verification environment developed using the same methodology.

A. Definition of interface used for showcasing the implementation

For the purpose of this paper, the implementation of a monitor using FSM for a packet-based interface will be

showcased on an interface that presents the TX side of an open-source Ethernet IP core[2]. The definition of

interface signals is given in Table 1.

Table 1 – Open-source Ethernet IP Core TX Interface

Name Width Direction Description

MRxDV 1 bit input Valid indication

MRxD 4 bits input Data bus

r_Pro 1 bit
input Promiscuous mode control signal - all

frames are received regardless of their

destination address

3

Name Width Direction Description

r_Bro 1 bit

input Broadcast mode control signal - all

frames containing broadcast addresses
are rejected

MAC 48 bits
input MAC address of the used Ethernet MAC

IP Core

MRxClk 1 bit input Clock

Reset; 1 bit input Reset

When MRxDV is asserted, data on an MRxD bus is valid. Control signals r_Bro, r_Pro, and MAC are set at the

start of each packet. It is assumed that r_Bro, r_Pro, and MAC should not change value during valid packet transfer.

Packets sent through an MRxD bus should follow the pattern shown in Figure 2.

Figure 2 – Packet’s Frames

B. Coding the FSM model inside the monitor class

The coding of the FSM model for the monitor class is divided into two tasks, detect_packet and collect_packet.

Task detect_packet has the functionality to monitor the activity of the MRxDV signal and detect when valid data

arrived on the data bus and started packet transmission. When valid data is detected, under this task, the FSM

variable value is changed from IDLE to PREAMBLE, a new item is created and static item values (r_Pro, r_Bro,

and MAC) are populated with corresponding signal values from the interface. Then, the collect_packet task is

called. When there is no valid data on a bus, the FSM variable is in the IDLE state. Implementation of the

detect_packet task is shown below:

Inside of collect_packet task state machine logic is implemented which follows packet definition by frames. With

each subsequent cycle with valid data on a bus, data will be sampled and stored in the corresponding item field

(preamble, dest_addr, source_addr…). The state jumping mechanism is regulated by counters for each modelled

state. These need to be initialized to values taken from the packet definition. For example, the preamble consists of

4 bytes. Since the data bus is 4 bits wide, the preamble will be driven in 8 valid cycles and therefore preamble_cnt

is initialized to value 8. Following the same principle, all counters are initialized (dest_addr_cnt = 12,

01 virtual task detect_packet();
02
03 fsm = IDLE;
04
05 forever begin
06 if (vif.slv_cb.MRxDV == 1'b1) begin
07 fsm = PREAMBLE;
08 item = uvm_eth_vip_item::type_id::create("item");
09 item.MAC= vif.slv_cb.MAC;
10 item.r_Pro = vif.slv_cb.r_Pro;
11 item.r_Bro = vif.slv_cb.r_Bro;
12 collect_packet();
13 end
14 else
15 @vif.slv_cb;
16 end
17 endtask

4

src_addr_cnt = 12, length_cnt = 4…). The counter is decremented with each valid data cycle and when reaches

value 0, the FSM variable is set to the next frame value. Implementation of the collect_packet task is shown below:

01 virtual task collect_frame ();
02
03 while(fsm != IDLE) begin
04 if (vif.slv_cb.MRxDV == 1'b1) begin
05 case (fsm)
06 PREAMBLE:
07 begin
08 item.preamble[(preamble_cnt-1)*4 +: 4] = vif.slv_cb.MRxD;
09 preamble_cnt--;
10 if (preamble_cnt == 0)begin
11 fsm = DEST_ADDR;
12 preamble_cnt = 8;
13 end
14 end
15 DEST_ADDR:
16 begin
17 item.dest_addr[(dest_add_cnt-1)*4 +: 4] = vif.slv_cb.MRxD;
18 dest_add_cnt--;
19 if (dest_add_cnt == 0)begin
20 fsm = SRC_ADDR;
21 dest_add_cnt = 12;
22 end
23 end
24 SRC_ADDR:
25 begin
26 item.source_addr[(src_add_cnt-1)*4 +: 4] = vif.slv_cb.MRxD;
27 src_add_cnt--;
28 if (src_add_cnt == 0)begin
29 fsm = DATA_LENGHT;
30 src_add_cnt = 12;
31 end
32 end
33 DATA_LENGHT:
34 begin
35 item.p_length[(lnght_cnt-1)*4 +: 4] = vif.slv_cb.MRxD;
36 lnght_cnt--;
37 if (lnght_cnt == 0)begin
38 fsm = DATA;
39 lnght_cnt = 4;
40 data_cnt = item.p_length*2;
41 end
42 end
43 DATA:
44 begin
45 item.data.push_back(vif.slv_cb.MRxD);
46 data_cnt--;
47 if (data_cnt == 0)begin
48 fsm = CRC;
49 data_cnt = 0;
50 end
51 end
52 CRC:
53 begin
54 item.CRC[(crc_cnt-1)*4 +: 4] = vif.slv_cb.MRxD;
55 crc_cnt--;
56 if (crc_cnt == 0)begin
57 fsm = IDLE;
58 crc_cnt = 8;
59 a_port.write(item);
60 end
61 end
62 endcase
63 end
64 @vif.slv_cb;
65 end
66 endtask

5

Information about the counter for data state (data_cnt) is not predefined by packet definition. Instead, it’s being

fetched from packet length information during packet transfer.

When the FSM variable reaches the CRC state, which is the last state by packet definition, CRC data is collected,

and the FSM variable is reset to the IDLE state. When that occurs, the item is completely populated with necessary

data and, since flow reached the end of the packet, is ready to be sent via the monitor analysis port.

C. Implementation of protocol checkers

As mentioned before, the existence of modelled FSM values in real-time makes the coding of protocol checkers

simple and standardized. The concept relies on the detection of any change in the value of a monitored signal.

Implementation of the check_signal task is shown below:

When change is detected, the current FSM modelled value is checked against packet states in which change of

value is legal. In the case of the interface defined above, it was assumed that signals r_Bro, r_Pro, and MAC should

not change if a valid data transaction is ongoing. Therefore, any detected change on these signals when modelled

FSM variable is not in IDLE state will be considered as a protocol violation and flagged with UVM_ERROR.

IV. BENEFITS AND RESULTS

A. Gains in debug

Presented concept of modelling a UVC monitor for packet-based interface as an FSM gives significant benefits in

debug process.

When dealing with erroneous behavior on a packet-based interface, an engineer usually needs to analyze fairly

complex packets, sometimes, with more than a thousand valid data cycles. This can be quite a challenging task and

it might take substantial time until the issue is located. This is particularly the case when debugging is conducted

on the verification component used in the verification of a module that does any kind of packet generation or data

manipulation within the existing packet. In order to find an issue in a faulty packet, an engineer will have to dive

deep into the interface definition and understand signal behavior in detail. Even after that, tracking data visually on

waveforms is almost impossible in some cases of extra-long packets.

01 virtual task check_signals();
02 fork
03 begin
04 forever begin
05 @(posedge vif.r_Pro, negedge vif.r_Pro);
06 r_Pro_signal_chk: assert(fsm == IDLE)else
07 `uvm_error("check_signals", $sformatf("Illegal r_Pro change detected
 during packet state : %s",fsm.name));
08 end
09 end
10 begin
11 forever begin
12 @(posedge vif.r_Bro, negedge vif.r_Bro);
13 r_Bro_signal_chk: assert(fsm == IDLE)else
14 `uvm_error("check_signals", $sformatf("Illegal r_Bro change detected
 during packet state : %s",fsm.name));
15 end
16 end
17 begin
18 forever begin
19 @(vif.MAC);
20 MAC_signal_chk: assert(fsm == IDLE)else
21 `uvm_error("check_signals", $sformatf("Illegal MAC change detected during
 packet state : %s",fsm.name()));
22 end
23 end
24 join_none
25 endtask

6

Option to push modelled FSM value to waveform alongside interface signals and track how packet progresses,

presents a powerful tool in the visual analysis of a packet. An example of this is given in Figure 3 where a packet,

of previously defined ethernet core interface, is showcased alongside modelled FSM variable.

Figure 3 – Interface and FSM Variable

Furthermore, each packet state counter implemented in the monitor solution can be used for tracking data on the

waveform. The existence of these counters in the monitor makes various tools' built-in cycle counter feature almost

completely redundant, as they are much less cumbersome to use (no need for setting cursors and comparing the

cycle numbers with valid signals).

Figure 4 – Interface and Data Counters

B. Performance metrics

One of the main concerns during the initial development of a UVC monitor which uses the FSM model concept

was how the addition of the FSM model will affect the performance of the monitor. With the aim to investigate this

topic, a dedicated testing environment was created.

The testing environment encapsulated two agents based on the TX side of the Ethernet IP core interface presented

earlier, developed according to the UVM. One agent was set as Master and the other as Slave and they were

connected via simple interconnect module. The slave agent was configured as PASSIVE since only the TX side of

the interface was implemented. A simple sequence was created to send the desired number of packets from the

Master to the Slave agent.

To secure proper control for performance measurement, another monitor was coded. The second monitor was

developed in a much more traditional way for this kind of interface: When valid packet transmission is detected,

monitor flow starts looping through cycles following the packet definition and collecting data. Part of the

implementation of this monitor is given below:

01 //preamble
02 for (int i = 7; i>=0; i--)begin
03 if (vif.slv_cb.MRxDV == 1'b1)begin
04 item.preamble[(i)*4 +: 4] = vif.slv_cb.MRxD;
05 @vif.slv_cb;
06 end
07 else begin
08 i++;
09 @vif.slv_cb;
10 end
11 end
12 //destination_address
13 for (int i = 11; i>=0; i--)begin
14 if (vif.slv_cb.MRxDV == 1'b1)begin
15 item.dest_addr[(i)*4 +: 4] = vif.slv_cb.MRxD;
16 @vif.slv_cb;
17 .
18 .
19 .

7

For the testing scenario, the data length of each item, as well as the delays between packets, were kept at fixed

values with the goal to minimize the effects of randomization on experiment results. During testing, two simulation

parameters are measured, CPU usage percentage and simulation time. Parameters measurement results were

compared when agents used the FSM monitor and the regular one. All results presented are rounded average values

deduced from regression of simulation runs. CPU usage and simulation time results are generated using the -perfstat

feature of the Xcelium [3] simulator.

Figure 5 – FSM vs. Regular monitor performance metrics

On the graphs above (Figure 5) it is plotted how CPU usage percentage (left) and simulation time (right) are

behaving with the number of transactions ran during simulation for both monitors. It can be noticed that for this

experiment, results in terms of simulation time are fairly close between the two monitors. With a higher number of

transactions ran in a single test, a small spike in simulation time can be spotted for simulation with the FSM monitor

but an increase in time does not exceed 10% on thousand transactions. Contrary to that, collected metrics on CPU

usage suggest that the FSM monitor used less percentage of available computing power than the regular monitor

with the highest difference of 4% on 1000 transaction runs. Gathered results are indicating that modeling the

monitor class of packet-based interface as an FSM would not deteriorate the performance of the simulation in which

such monitor is used, and it even has the potential to improve them.

During the experiment, memory usage was also measured. Results were identical for both types of monitors.

V. CONCLUSION

As mentioned, monitoring of packet-based interfaces can be a challenging task, especially for interfaces with

complex packet definitions. The proposed solution of modelling monitor class as an FSM for packet-based

interfaces tends to standardize the coding of a such monitor. It even offers a certain amount of code reusability

between interfaces with similar packet definitions. An FSM structure would remain the same across different

monitors and can be copied and later modified to fit the new packet definition of an interface when reused. A similar

type of standardization would come with the implementation of protocol violation checkers. As shown in the paper,

coding these checkers can be quite an easy task, once an FSM variable is modelled correctly.

The benefits of the presented solution during a debug of a monitored interface are substantial. In modern ASIC

functional verification, debugging is the process that statistically takes more resources than coding. Therefore,

during verification component development, verification engineers should code their VIP with as many debug

capabilities as possible. Modelled FSM variable in a monitor which shows the current state of the packet will speed

up the process of debug of complex packets immensely.

All the mentioned benefits of the presented monitor concept are achieved without noticeable degradation in

performances when compared to a traditionally coded monitor per conducted experiments.

Modelling of a UVC monitor Class as an FSM for a packet-based interface certainly gives an interesting perspective

on the problem of monitoring for packet-based interfaces and can probably become even more efficient and

applicable with future upgrades and extensions.

8

REFERENCES

[1] Universal Verification Methodology (UVM) 1.2 Class Reference, 2011 - 2014 Accellera Systems Initiative (Accellera)

[2] Igor Mohor - IgorM@opencores.org “Ethernet IP Core Design Document”, Rev. 0.4 ,October 29, 2002

[3] Xcelium XRUN User Guide - Product Version 19.09, September 2019

mailto:IgorM@opencores.org

