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Abstract—In this paper, the outcome of developing a reusable formal verification framework is presented. 

SystemVerilog Assertions (SVA) language is used to describe formal assertions, while the entire process has been 

automated through a framework coded in Python. Our method shows a possible approach to overcome two SVA’s 

limitations: the lack of support to represent dynamic cycle delay (run-time re-configurable delay) and the absence of 

tasks/utilities that could automatically derive an invariant assertion. The solution decouples dynamic and static 

components of a delay: the first one is modelled with helper logic and it is moved out from the SVA logic, whereas the 

constant part of the delay is then used to write both direct and invariant assertions in SVA. Thus, dynamic cycle delays 

with and/or without constant uncertainties can be produced by the tool. The generated code has also been successfully 

ported in simulation with due arrangements to handle level-sensitive sequence controls. This methodology adoption 

not only reduced the learning curve for less experienced verification engineers, but it also secured a consistent 

architecture for solving this kind of problems. 

I. INTRODUCTION 

    Today, assertion-based verification (ABV) has been used as a crucial part of the modern functional verification 

methods. Low level assertions, usually implemented as white-box assertions, describe the exact behavior of 

transactions or pin wiggling. They are either bound directly on RTL module or embedded inside the simulation-

based test bench. High-level assertions, which translate the requirements directly into machine language, can be 

used as the building elements in the formal based test bench. SystemVerilog assertion is in its nature a concise 

description of certain temporal logic. Therefore it has always been considered as the most efficient to verify timing 

accurate functionalities, and often as a complement to the transaction level modelling of the system.  

A big portion of the assertions can be categorized as to measure the timing relations between several events or 

sequences. This gives us the idea to abstract and find a generic solution to cover most requirements in this 

category, and then to automate the process to make it consistent and scalable in the deployment. This is the 

fundamental motivation of this work. 

Timing relations between two events can be as simple as “event A happened 5 clock cycles after event B”, but 

often the requirements contain more variable or uncertain timing relations. We also wish to include timing checks 

between sequences too. And due to the temporal nature of the sequence, this adds one more level of complexity. 

One limitation of the SVA language is that the time range has to be specified and solved at compile time. We want 

our tool to be able to handle not only the use cases with static and fixed timing requirements, but also the more 

dynamic, run-time configurable delays and timing relations. 

Furthermore, our goal is also to check the completeness of logical relations, i.e. both sufficiency and necessity 

of conditions should be checked. Depending on the use case, we generate both the direct assertion to check the 

sufficiency, and the inverted assertions (referred to as invariant assertions in the paper) to check the necessity. It 

is also possible to change the assertion property to cover property for the necessity check, which shows if the 

timing checks has been triggered at all. 

The outcome of our work is a tool called SVAGen, which takes the input template in Python and automatically 

generate a set of assertions as an output. These assertions can be used in a formal based verification environment 

which exhaustively verify the timing relations for various events and sequences. The converging time of these 

assertions are tested and presented. Also the assertions can be used directly in a traditional simulation based test 

bench as part of the functional verification process. The coverage result can be generated and merged by EDA 

coverage tools. With little learning time, verification engineers with no SVA experience can produce high quality, 

customized assertions which verify different timing requirements of a module. The tool reduces the general 

verification time, improve verification quality, and leverage the organisation’s SVA competence.  
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II. PROBLEM DEFINITION 

    Our first step is to generalize the target use cases of our tool into an abstract model, so we can come up with a 

generic solution. We consider the following scenario as our starting point:  

• Sequence A happened, then after a fixed delay of d clock cycles, sequence B happened.  

    This is depicted in the left part of Figure 1, and can be easily solved by writing 1-2 assertions. Now we add 

some complexity to the scenario to cover more scenario: 

• Sequence A happened, then after a variable delay of d clock cycles, sequence B happened.  

 For certain use cases, it is still not enough. We want to specify even more uncertainty on top of the variable 

delay of d clock cycles, as depicted in the right part of Figure 1: 

• Sequence A happened, then after a variable delay of d clock cycles, with some uncertainty of ±N cycles, 

sequence B happened. 

 This generalization covered most of the use cases in a certain customer project, therefore we take it as the 

target for our SVAGen tool. One of the major challenges we encountered when implementing a generic timing 

check, is to describe in concise SVA language the condition and the time range for one or the other sequence to 

happen. Translating the generalized target into pseudo SVA language, we get 

 𝑆𝐸𝑄𝐴. 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 |−>  ##[𝑑 − 𝐷𝐿: 𝑑 + 𝐷𝐻] 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 (1) 

 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 |−>  $𝑝𝑎𝑠𝑡(𝑆𝐸𝑄𝐴. 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑, [𝑑 − 𝐷𝐿: 𝑑 + 𝐷𝐻]) (2) 

    The window [d–DL:d+DH] represents the valid temporal interval which SEQB must trigger in: d is a dynamic 

delay, DL(DeltaLow) and DH(DeltaHigh)are static values. Method triggered is a SVA standard function, 

which tests whether its operand sequence has reached its end point at that particular point in time. Property (1) 

affirms that SEQB must trigger within a range of [d–DL:d+DH]  clock cycles after SEQA. Property (2) ensures 

that if SEQB is triggered then SEQA was triggered in a range of [d–DL:d+DH] clock cycles in advance. 

    To the best of authors’ knowledge, SVA language constructs does not support checking re-configurable delays 

at run-time employing. Writing these two properties as they are and we will end up with compile errors. We must 

find other ways to handle the check of this kind of dynamic timing relations. 

    The limitations taken into consideration in our work are summarized in the following observation points (OP): 

• OP-1. SVA’s cycle delay operator shall only be used with constant values. Property (1) can be modelled 

with SVA only if DL, DH and d are constant values. 

• OP-2. We must provide both the direct and inverted assertion to check the sufficient and necessity 

conditions. There is no standard SVA construct to automatically express (2). 

    In our case, (1) cannot be directly modelled in SVA because d can vary at run-time. And the same applies for 

(2) since $past() operator requires a static number of clock cycles.   

Figure 1. A fixed timing check scenario vs. a dynamic timing check scenario 
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III. SYSTEM OVERVIEW 

A. Theoretic Solution and Implementation 

 As seen before, (1) describes a dynamic temporal relation between two sequences SEQA and SEQB. To solve 

our problem, we created a delayed version of SEQA, such that this new sequence is triggered K clock cycles after 

SEQA. Figure 2 shows the timing relationship between SEQA, SEQAd and SEQB. Our reference is now shifted from 

SEQA to SEQAd, so it is possible to re-write (1) to (3) and (4) 

 𝑆𝐸𝑄𝐴𝑑 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 |−>  ##[𝑑 − 𝐾 −  𝐷𝐿: 𝑑 − 𝐾 +  𝐷𝐻] 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 (3) 

    Now we want this delayed sequence SEQAd to happen at the earliest point of time where SEQB can happen. That 

is when the K = d – DL. And we can rewrite the rest of the check as in (4). As shown here, after we delayed SEQA 

by d-DL cycles, the time between SEQAd and SEQB becomes a fixed number. And this will no longer be a problem 

to describe the check in SVA.  

 𝑆𝐸𝑄𝐴𝑑 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 |−>  ##[0: 𝐷𝐿 +  𝐷𝐻] 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 (4) 

    To summarize, the solution is obtained by decoupling the dynamic and the static timing relations in this 

scenario. We first model the dynamic timing relations by creating a delayed version of the original sequence, 

which is delayed by d–DL clock cycles. Once we have removed the dynamic part from the equation, we are left 

with a static Validity Window (VW) with a size of DL + DH, which can be checked by simple assertions.   

    There are many ways to implement the two checks. One solution is to use a counter structure to book-keep the 

delay number. Then we use the SVA to check the if SEQB, happens inside the VW. Another way is to introduce 

two FIFO structure. One FIFO should track the dynamic delay of the SEQA, while the second represent the VW, 

with its length as DL+DH. The triggering of SEQA is stored in the first shift registers for d-DL cycles, and then 

being popped into the second. As soon as the recorded event enters second FIFO which represents VW, SEQB is 

expected to trigger within a range of [0: DL + DH] clock cycles.  

    In the FIFO implementation, we can derive the invariant property as: If SEQB is triggered, then an event is 

expected to be recorded inside the window. VW’s emptiness translates into the assertion failure for this property, 

meaning that no SEQA was previously triggered. Consequently, the concept expressed by the inapplicable (1) and 

(2) can now be represented in SVA respectively by (5) and (6): 

 𝑉𝑊[𝐷𝐿 +  𝐷𝐻] |−>   ##[0: 𝐷𝐿 +  𝐷𝐻] 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 (5) 

 𝑆𝐸𝑄𝐵 . 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 |−>  𝑉𝑊 ! =  ′0 (6) 

   

Figure 2. Use of a delayed version of SEQA to eliminate the dynamic delay from the Validity Window (VW). 
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When we were implementing our solution in real SVA code, we started out from a specific use case, shown in 

Figure 3. We intend to check the timing between two sequences: S_ROSE(top.in_0) and S_ROSE(top.out_0). 

S_ROSE is a user defined sequence. The triggered event of these two sequences is first recorded into the A_fifo, 

which keeps track of the dynamic delay part.  After the event has been shifted out of the A_fifo, it enters 

A_window, which tracks the VW part. A few corner cases have been handled explicitly, as shown in the code. 

The code has been written in a way that is later generalized as a template to generate assertions for similar use 

cases. The implementation provides us a generic solution to overcome the above-mentioned limitations OP-1 and 

OP-2. 

B. Automation 

After we have implemented our solution, we reached the second phase whose goal is to abstract the SVA 

writing process. We wish to implement a push-button tool to generate consistent and scalable SVA code which 

can handle timing checks in this category. Our input should only contain the necessary information such as the 

sequences definition, delay number, VW range, etc. A conceptual overview of our solution is shown in Figure 4.  

Our tool, SVAGen, is an automatic engine that generates a set of assertions based on the templates provided as 

inputs. The only input parameter that the user needs to update is the “Assertion Description” part, which has a 

format as in Figure 5. The label name, reset signal, sequence definition, d, DL, DH, and assertion type is specified 

in the input description file.  

Figure 4. High level overview of SVAGen tool  

Figure 3. Implementation of the solution in SVA 
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Second part of the input is the template. It is a skeleton to generate the assertions shown in Figure 3. The 

automatic engine take the template and plug in the input parameters specified in the input description file, and 

generate the output assertion files. A directory structure of the tool and the input/output files can be found in 

Figure 6. 

     ├── fifo_autogen_checkers.sv // Output file generated by the tool 

     ├── fifo_autogen_macro.sv    // Output file generated by the tool 

     ├── run.py                   // Input description for assertion parameters 

     ├── sva_gen                   

     │   ├── AssertionContainer.py // Internal python script 

     │   ├── Assertion.py 

     │   ├── AssertionRangeDelay.py 

     │   ├── Parser.py 

     │   ├── templates               

     │   │   ├── cnt                 

     │   │   │   ├── template.sv     // Input assertion templates using counter structure 

     │   │   │   ├── template.yaml    

     │   │   ├── fifo 

     │   │   │   ├── template.sv     // Input assertion templates using fifo structure 

     │   │   │   ├── template.yaml    

     ├── test.py 

  

During the development, we experimented with templates with different implementations and size of FIFO 

and counters. This feature has been exploited to evaluate the best architectures and to do some design/verification 

space exploration of the tool. Furthermore, a Python base class for assertions is supplied as input too and it is 

possible to extend it to enrich each assertion with more functionalities. For example, gathering functional coverage 

which will be useful in simulation, and it can be easily added by extending the base class. The tool not only 

generates assertions, but it also allows the user to add different types of helper logic or new SVAs by changing 

the input template file. Both SVA and helper logic output files produced by SVAGen can then be passed as inputs 

to formal and simulation tools. In this way, engineers can save time and boost productivity by adopting SVAGen 

to automatically produce SVA and then test or assess several implementations. To make it more scalable, we also 

plan to add a Domain Specific Language (DSL) in the future.   

IV. VALIDATION STRATEGY 

In this section we focus on how we validated such an infrastructure. Firstly, we chose a DUT which is suitable 

for doing dynamic timing check. DUT structure and the tool environment is described in the following section. 

Secondly, we use a commercial formal tool to run and prove the generated assertions. Output waveform from the 

formal tool is checked and explained. Finally, we conducted a performance measurement on the formal converging 

time. The steps for this measurement and the results are discussed.  

A. DUT 

Figure 5. Input assertion description format 

Event output i/fEvent input i/f

LSFR

Event generator

Configuration i/f

DUT

Figure 6. Directory structure of the tool with the input/output files 

Figure 7. Overview of DUT block 
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    Figure 7 shows an overview of the DUT, which is a configurable event generator. On input side, the device has 

an event input interface which receives multiple level triggered or edge triggered events, and a simple AMBA 

configuration interface. On the output side there is a similar event output interface. Based on the configuration, 

the device can generate a modified version of certain events. It can be delayed or logically combined with other 

events, etc. There is also an internal LSFR block which generates a randomized delay margin, and can add some 

degree of uncertainty to the output events.  This highly configurable device provides us a solid and versatile 

baseline to challenge our tool and its autogenerated assertion. 

B. Tool flow overview 

Figure 8 represents the top-level flow of using SVAGen. First of all, we modify the input description file, and 

choose one of the templates of the assertions. Then, we run SVAGen to generate the SVA files where assertions, 

assumptions and sequences are defined. After that, the autogenerated SVA files are merged into an assertion 

module and then bound onto the DUT. By doing this, we ensure that assertions are running on signals from the 

DUT top-level. In this paper we only describe the validation process of the FIFO template. The counter template 

is validated too but not described here, due to the page limitation. 

C. Waveforms for a use case scenario 

To validate the assertions that are generated by our SVAGen tool, we used a commercial formal tool to run on 

the output assertions. And since we also generate the cover property from SVAGen, we were able to obtain some 

waves from the formal tool when the cover property is covered.  Figure 9 depicts a small portion of one trace 

which is derived from the run. Dynamic delay cfg_d is getting re-configured at run-time, while the parameters 

defining the boundaries of the validity window are static, which is 3. In this case, if the input sequence (Seq_IN) 

is triggered, the output sequence (Seq_OUT) is expected to be triggered within a range of [cfg_d – 3 : cfg_d + 3] 

clock cycles. Therefore, within this context, the VW has a width of 6 clock cycles. The portrayed part of the trace 

shows four different cases. Three out of four input sequences share the same cfg_d = 13, and the fourth has the 

cfg_d = 56. In all these cases, the Seq_IN and Seq_OUT are triggered within the correct timing frame. And the 

tool did not find any counter example and proved the properties without any problem. 

 

Figure 9. Trace derived from the run of a commercial formal tool. 

Figure 8. System overview comprehending the tool SVAGen and the flow at top-level. 
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D. Performance measurement  

Performance is an important aspect of the formal based assertions. If the assertions cannot be fully proved 

within a reasonable amount of time, they will not be useful for our verification purpose. Our goal is to test the 

limit of these generated assertions and find out ways to improve the performance in terms of converging time. 

We started out from an RTL implementation which supports a configurable delay up to 1k clock cycles. And 

we used the FIFO template to generate both assertions. The formal tool went timed-out after the predefined time-

out period of 4 hours, with neither a counterexample nor a full proof.  

We then tried than a few things to improve this. On the second iteration, we assumed a range of 100 clock 

cycles within the 1k clock cycles. This setup means the delay is still configurable, but we know approximately 

where the possible values are, e.g. between [801:900]. With this approach the proof was achieved in few minutes.  

This gives us an idea of using a divide-et-impera method to prove the whole dynamic range. We split up the 1k 

clock cycles into ten intervals of 100 clock cycles. And we used a set of assertions to prove each interval 

individually.  

To do this, we added an extra layer in SVAGen to automatically produce the assumptions which specify the 

interval that our configuration falls in. Depending on how many intervals, we also generate the same amount of 

assertion set to cover each and every interval.  

Our formal tool showed good result for this. After we divide the 1k clock cycles into 10 intervals, they have all 

been proved within short amount of time. The interval with lower range, e.g [0:100] has a faster converging time 

than the higher range, e.g. [900:1000], which is also expected. We also experimented with different intervals of 

10, 20, 50 and 100. The result shows that in general smaller interval range is more friendly for formal tools in 

converging time, but too small interval actually increased the total converging time, likely due to the overhead in 

each run.  

To sum up the results, we show the numbers from our experiment in Table 1. The results are obtained using a 

FIFO template, with a maximum dynmaic timing range of 1000 clock cycles. The results show the converging 

time for each interval with interval size 10, 20, 50 and 100. We can see that among all the measurement, interval 

size of 20 has best performance in converging time. While for the other intervals, the total amount of converging 

time are all within reasonable range. Spliting the whole run in multiple tasks has improved the performance of 

SVAGen output assertions. It also allows the tool to parallerize the run. The only drawback of this approach is the 

number of assumptions and assertions are increased significantly. But since everything is autogenerated and 

packed into a few output files, this is not visible to the user and therefore of little importance.  

Due to the time limitation, we did not try to uncover the maximum upper bound which our tool has problem to 

converge, even with the divide-et-impera approach. One reason is that DUT plays a major role in converging time. 

Different implementation of the RTL will result in very different upper bound limit. The formal tool also has been 

constantly improving in its performance. A maximum limit number is different from case to case, and will not 

hold as the tool itself develops. For our work, we have validated that the generated assertions can be used for 

checking reasonably long timing requirements. And we have shown a method which can further improve the 

efficiency of our generated assertion checks. 

     
Table 1 Results obtained from the analysis  
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V. CONCLUSION 

    In this paper, we presented a generalized solution for common timing check requirements in block level 

verification. We discussed how the limitation caused by SVA syntax can be overcome by decoupling the dynamic 

and static components. Adding invariant and cover properties complete the check of the logical conditions. The 

assertion-writing process is automated into a Python based tool that generate these assertions with only the 

necessary input paramters. The split of the input parameter file and template file allows the user to further develop 

the assertions or implement other requirement. The generated assertion files are modularized which makes them  

easy to scale. When a project has many requirements for this kind of timing check, SVAGen decrease the assertion 

development time significantly. The outcome is well-written assertions that are uniform in format, pre-verified 

and ready to be deployed in the projects. 

We have also tested the generated assertion in both simulation and formal tools and both showed good results. 

For formal tool we also looked into improving the converging of the generated assertions. SVAGen has been 

deployed in several customer projects, and the feedback from the customers is very positive. The tool is considered 

to be easy to use, flexible and producing robust timing checks that satisfy a wide range of verification 

requirements.  

SVAGen will be released as an open-source project within the next months on SyoSil website at the following 

link [4]. 

 

VI. FUTURE DEVELOPMENT 

Due to the flexibity of the SVAGen, it can be extended easily with more functionalities. One example could be 

to integrate the functional coverage model in the template and let the formal tool report coverage automatically. 

Another example could be the creation of more focused templates to produce targeted helper logic to reduce the 

COI, so that we can check timing requirements with wider range. 

To ease the configuration process of SVAGen even further for a specific DUT then instead of instantiating 

Python classes directly a DSL for the configuration could be introduced. The DSL would then capture the meta 

data involved (label name, reset signal, d, DL, DH, assertion type etc.) and then SVAGen instantiates the correct 

Python class. This will also eliminate the requirements towards Python for the users. 
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