(2022

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DECEMBER 6 -7, 2022

Overcoming System Verilog Assertions limitations
through temporal decoupling and automation

Mattia De Pascalis, Xia Wu,
Matteo Vottero, Jacob Sander

Background

e SVA is a de facto standard for Formal Verification
* Completeness of logical relations
* Timing relations between several events or sequences
* Glue logic used to abstract class of problems

* |[dentify and automate a class of assertions
 Common abstraction/glue logic
* Decouple Assertion and glue logic
* Automatic direct and inverted assertion generation

aecellerd) - _

SYSTEMS INITIATIVE

Class of problem(s) considered in the paper

* Temporal relationship between two “generic” sequences SegA, SeqB

* d is dynamic (reconfigurable)
* Internal uncertainties DL, DH] (DL, DH constants and d — DL > 0O)
* |FSeqA THEN ##[d—-DL:d + DH] SeqB

(DL=1,DH=1} IFSeqAThen##[d-1:d+ 1] SeqB

()

SYSTEMS INITIATIVE

Problems discussed in the paper

* SVA language does not support dynamic delays
* Need to abstract the problem
* Need to develop an architecture that implement the solution

* Decouple Sequences, helper logic and assertions
* Sequences shall be developed as “standalone” library
* Shall be possible to try different type of helper logic models
* |t should be easy to debug

* Automatic generation of inverse assertion

()

SYSTEMS INITIATIVE

Abstract and overcome SVA limitation

SegA.triggered | -> ##[d - DL : d + DH] SeqgB.triggered [1]

* d = dynamic delay, DL and DH constants
* Not supported in SVA as it is

* Assumptions:

* Introduce SegAD = SegA delayed of K clock cycles
* Substitute SeqA with SegAD in [1]
* Express new timing relationship between SeqAD and SeqgB

()

SYSTEMS INITIATIVE

Abstract and overcome SVA limitation

SegAD.triggered | -> ##[d - K - DL : d - K + DH] SegB.triggered [2]

* Make use of auxiliary logic such that K=d - DL
SeqgAD.triggered | -> ##[d-(d - DL)- DL : d-(d - DL)+DH] SegB.triggered [3/

SeqAD.triggered | -> ##[0 : DL + DH] SegB.triggered [4]

* [4] does not contains dynamic delay anymore
* SeqAD can be modelled with auxiliary code
* [4] Can be expressed in SVA

()

SYSTEMS INITIATIVE

Problems discussed in the paper

* SVA language does not support dynamic delays
* Need to abstract the problem
* Need to develop an architecture that implement the solution

* Decouple Sequences, helper logic and assertions

* Sequences shall be developed as “standalone” library
* Shall be possible to try different type of helper logic models
* |t should be easy to debug

* Automatic generation of inverse assertion

()

SYSTEMS INITIATIVE

SVAGen architecture

* Python framework

* Templates to describe a specific auxiliary logic architecture
Describes timing relationship between SVA sequences
Configure each assertion with any of the available templates
Configure each assertion with higher/lower logic (help debug)
Enable/Disable automatic inverse assertion generation

e Available as opensource tool

aecellerd) - _

SYSTEMS INITIATIVE

SVAGen architecture

<> SVA sequence and

top_sva.sv

Template_A property library

dut.sv

Template_B

g
Template_C

top_sva.sv

A

SVAGen Auxiliary code

><Choose Template Direct Assertions

rt Describe/config Assertlons Inverse Assertions

| 7y

| |

| python | SV /SVA

: !_ Enable visibility of internal signals
I

geceller?)

SYSTEMS INITIATIVE

Formal Tool(s)

R

Formal proof
found

Cannot
Converge

Failure

DESIGMN AND VERIEICATION™

DVCON

CONFERENCE AND EXHIBITION

MUNICH, 5
DECEMBER &

Validation and test

e DUT definition
* d : Reconfigurable delay
* L :rndinrange [-1:+2] (LSFR)
ed-DL>0—>d>=1

e SVA Sequence definition
* Develop generic sequences
* No timing relationship in sequences

S
_>

clk —pp» F(a,d, L) : laafterd + Lclks
_>

. 4

LSFR [-1 : +2]

DUT

sequence s_a;
al;
endsequence: s_a;

sequence s_b;
b);
endsequence: s_b;

(§6§§i

DESIGMN AND VERIEICATION

()

SYSTEMS INITIATIVE

Example

assertionModule =

¢ SVAGen CcO nflgu ratlon AssertionContainer(- SVAGen class
] ETE | - SVAGen class
e Select tem plate for dynam|c dEIay "./sva_gen/templates/fifo/template.yaml", < Template YAML
. . ".[sva_gen/templates/fifo/template.svh" , <-- Template SVH
* CO nflgu re assertion "out_macro.svh", - Output macro name

i RLI N SVAGen tOOI "out_checkers.svh")) - Output checkers name

. . assertionModule.add_assertion(
* Integrate output file into Formal TB | hssertion type

("rose_a_then_fell b", - assertion name
<--Sequence for precondition
<-- Sequence for consequence
<-- delay signal
<-- ABS min uncertainty
<-- ABS max uncertainty
<-- max delay allowed

accelleray - - DVCON

SYSTEMS INITIATIVE

Exa m p | e s_a.triggered

shift reg Validity Window

of8 off] of off 1f} off ofl—p-1 of ofH o

. [999] [998] [997] [3] [2] [1] [0] [2] [1] [0]
* Shift Reg < Moxdelay ——— - > < DL+DH P

* Register s_a trigger in position [d — DL]
* Advance every clk cycle 1 position
* Validity Window
* First “event” activate direct assertion
* Inv assertion looks at full Validity Window

o8 o] o off 1 ol of—p ol ol o
o[of) o off o 18 of—pf o} off o
o8 ofF o off off offf 1f—p-1 ol of§ o

ol of] o off o off of—p 108 of o

* Helper logic generated by SVAGen EDE EoEEEN p n o

* RangeDelay Template in this example
o[ol o o] o ol of— P ol o

SYSTEMS INITIATIVE

Example

posedge clk

* Auxiliary logic
rose_a_then_fell_b_fifo
rose_a_then_fell_b_window

d H a n d I e CO rn e r Ca Ses rose_a_then_fell_b_s1_triggered_d0

rose_a_then_fell_b_s1_triggered_d1

H H rose_a_then_fell_b_s1_triggered_d2

* Handle fifo/shift reg update
° d I I H d : H d d rose_a_then_fell_b_window[rose_a_then_fell_ b_WINDOW._L - 1 : 0]

H a n e Va I Ity WI n OW u p ate rose_a_then_fell_b_window[rose_a_then_fell_ b_WINDOW_L : 1];

. . 32'(rose_a_then_fell_b_delay - ‘rose_a_then_fell_b_DL) > 2

Y d I d d I I rose_a_then_fell_b_window['rose_a_then_fell b_WINDOW_L] <= rose_a_then_fell_b_fifo[0];

H a n e r u ntl m e a r Ca C u at I O n 32'(rose_a_then_fell_b_delay - ‘rose_a_then_fell_b_DL) ==

rose_a_then_fell_b_window[rose_a_then_fell b_ WINDOW_L] <= s_a.triggered;

[J

U pd ate a I I d ata St ru Ct ures 32'(rose_a_then_fell_b_delay - ‘rose_a_then_fell_b_DL) == 1

rose_a_then_fell_b_window['rose_a_then_fell b_ WINDOW_L] <= rose_a_then_fell_b_s1_triggered;
32'(rose_a_then_fell_b_delay - ‘rose_a_then_fell_b_DL) == 2) rose_a_then_fell_b_window[rose_a_then_fell_ b_WINDOW_L]
rose_a_then_fell_b_s1_triggered_dO;
rose_a_then_fell_b_fifo <= rose_a then_fell_b_fifo >> 1;
rose_a_then_fell_b_fifo [32'(rose_a_then_fell_b_delay - 1 - ‘rose_a_then_fell_b_DL)] <= s_a.triggered;
rose_a_then_fell_b_s1_triggered_dO0 <= rose_a_then_fell_b_s1_triggered;
rose_a_then_fell_b_s1_triggered_d1 <= rose_a_then_fell_b_s1_triggered_do0;

rose_a_then_fell_b_s1_triggered_d2 <= rose_a_then_fell_b_s1_triggered_d1;

(2022

accelleray - - DVCON

SYSTEMS INITIATIVE

DECEMBER & -

Example

* Assertions generated from SVAGen
* Only static delay are used

 Full proof with formal tool
shift reg Validity Window

2 1)

[999] [998] [997] [3] [2] [1] [0]

property p_rose_a_then_fell_b;
validity_window[2] 0: DL+ DH] rose_a then fell b_triggered;
endproperty: p_rose_a_then_fell_b;

a_rose_a_then_fell_b : ('CLK_SEQ p_rose_a_then_fell_b);

acceller?)

SYSTEMS INITIATIVE

Problems discussed in the paper

* SVA language does not support dynamic delays
* Need to abstract the problem
* Need to develop an architecture that implement the solution

* Decouple Sequences, helper logic and assertions
* Sequences shall be developed as “standalone” library
* Shall be possible to try different type of helper logic models
* |t should be easy to debug

e Automatic generation of inverted assertion

()

SYSTEMS INITIATIVE

Example

* Assertions generated from SVAGen
* Inv assertion exploits Validity Window
* Validity Window stores info about past events

* Full proof with formal tool Shif reg TR

EEDERD b D

[3] [2] [1] [0] 2

[999] [998] [997]

property p_rose_a_then_fell_b_inv;
rose_a then_fell_b_triggered validity_window != ‘O;
endproperty: p_rose_a_then_fell_b_inv;

a_rose_a_then_fell_b_inv : ('CLK_SEQ p_rose_a_then_fell_b_inv);

acceller?)

SYSTEMS INITIATIVE

Validation and results

* Time to find proof depends on 2 main factors:

* Interval of delay
* Range of delay
* Always used uncertainties of +/- 3

Interval 10 Interval 20 Interval 50 Interval 100
Range Time (sec) Range Time (sec) Range Time (sec) Range Time (sec)
Min Max AD AINV|[Min Max AD AINV| Min Max AD AINV| Min Max AD A INV

0 10, 1 0,2 0 20 | 13 11 0 50 1,7 23 0 100 | 44 38
11 200 1 1 21 40 14 12 | 51 100 26 42 | 101 200 | 124 136
21 300 1 16 | 41 60 | 14 15 | 101 150 = 76 68 | 201 300 @ 426 362

971 980 27,5 126 941 960 13,9 245 851 900 ' 101,5 2035 | 701 800 | 3344 2304

981 950 28,2 113 961 980 126 15,7 901 950 = 56,9 47,6 801 900 1366 2834

991 1000, 116 138 981 1000 | 16,3 16,7 951 1000 @ 324 27,7 900 1000 | 126,3 48,2
Total 1352 843 390,8 505,83 675,67 973,67 981 13138

SYSTEMS INITIATIVE

() - DVECON

Conclusion

e Automatic handling of dynamic delay

e Automatic handling of inverse assertion

e Easy framework to switch auxiliary logic

* Reusable methodology for formal and simulation

* Tool is open sourced and available for download at this link

()

SYSTEMS INITIATIVE

https://www.syosil.com/resources/open-source-software

Future developement

* Investigation for more efficient auxiliary logic

* Refactoring of SVAGen for better reusability

()

SYSTEMS INITIATIVE

Questions

decellerd) - _

SYSTEMS INITIATIVE

