
Overcoming System Verilog Assertions limitations
through temporal decoupling and automation

Mattia De Pascalis, Xia Wu,

Matteo Vottero, Jacob Sander

Background

• SVA is a de facto standard for Formal Verification
• Completeness of logical relations

• Timing relations between several events or sequences

• Glue logic used to abstract class of problems

• Identify and automate a class of assertions
• Common abstraction/glue logic

• Decouple Assertion and glue logic

• Automatic direct and inverted assertion generation

1

Class of problem(s) considered in the paper

• Temporal relationship between two “generic” sequences SeqA, SeqB
• d is dynamic (reconfigurable)

• Internal uncertainties DL, DH] (DL, DH constants and d – DL > 0)

• IF SeqA THEN ##[d – DL : d + DH] SeqB

2

Problems discussed in the paper

• SVA language does not support dynamic delays
• Need to abstract the problem

• Need to develop an architecture that implement the solution

• Decouple Sequences, helper logic and assertions
• Sequences shall be developed as “standalone” library

• Shall be possible to try different type of helper logic models

• It should be easy to debug

• Automatic generation of inverse assertion

3

Abstract and overcome SVA limitation

•
• d = dynamic delay, DL and DH constants

• Not supported in SVA as it is

• Assumptions:
• Introduce SeqAD = SeqA delayed of K clock cycles

• Substitute SeqA with SeqAD in [1]

• Express new timing relationship between SeqAD and SeqB

SeqA.triggered |-> ##[d – DL : d + DH] SeqB.triggered [1]

4

Abstract and overcome SVA limitation

•
• Make use of auxiliary logic such that K = d - DL

ons:

• [4] does not contains dynamic delay anymore

• SeqAD can be modelled with auxiliary code

• [4] Can be expressed in SVA

SeqAD.triggered |-> ##[d – K - DL : d - K + DH] SeqB.triggered [2]

SeqAD.triggered |-> ##[d–(d - DL)- DL : d–(d - DL)+DH] SeqB.triggered [3]

SeqAD.triggered |-> ##[0 : DL + DH] SeqB.triggered [4]

5

Problems discussed in the paper

• SVA language does not support dynamic delays
• Need to abstract the problem

• Need to develop an architecture that implement the solution

• Decouple Sequences, helper logic and assertions
• Sequences shall be developed as “standalone” library

• Shall be possible to try different type of helper logic models

• It should be easy to debug

• Automatic generation of inverse assertion

6

SVAGen architecture

• Python framework
• Templates to describe a specific auxiliary logic architecture

• Describes timing relationship between SVA sequences

• Configure each assertion with any of the available templates

• Configure each assertion with higher/lower logic (help debug)

• Enable/Disable automatic inverse assertion generation

• Available as opensource tool

7

SVAGen architecture

Template_A

Template_B

Template_C

Choose Template
Describe/config Assertions

SVAGen Auxiliary code
Direct Assertions
Inverse Assertions

SVA sequence and
property library

dut.sv

top_sva.sv

top_sva.sv

python SV / SVA

Formal Tool(s)

Formal proof
found

Cannot
Converge

Failure

Change/customize template

Enable visibility of internal signals

8

Validation and test

• DUT definition
• d : Reconfigurable delay

• L : rnd in range [-1 : +2] (LSFR)

• d – DL >= 0 → d >= 1

• SVA Sequence definition
• Develop generic sequences

• No timing relationship in sequences

sequence s_a;
 $rose(a);
endsequence: s_a;

sequence s_b;
 $fell(b);
endsequence: s_b;

9

Example

• SVAGen configuration
• Select template for dynamic delay

• Configure assertion

• Run SVAGen tool

• Integrate output file into Formal TB

10

Example

• Shift Reg
• Register s_a trigger in position [d – DL]

• Advance every clk cycle 1 position

• Validity Window
• First “event” activate direct assertion

• Inv assertion looks at full Validity Window

• Helper logic generated by SVAGen
• RangeDelay Template in this example

Max delay DL + DH

s_a.triggered

shift reg Validity Window

0 0 0000 0 001

0 0 0000 0 010

0 0 0000 0 100

1 0 0000 0 000

0 1 0000 0 000

0 0 1000 0 000

0 0 0000 0 001
[999] [998] [997] [3] [2] [1] [0] [2] [1] [0]

11

Example

• Auxiliary logic
• Handle corner cases

• Handle fifo/shift reg update

• Handle Validity window update

• Handle runtime addr calculation

• Update all data structures

...
always @(posedge clk)
begin
 if(top.rst)
 begin
 rose_a_then_fell_b_fifo <= '0;
 rose_a_then_fell_b_window <= '0;
 rose_a_then_fell_b_s1_triggered_d0 <= '0;
 rose_a_then_fell_b_s1_triggered_d1 <= '0;
 rose_a_then_fell_b_s1_triggered_d2 <= '0;
 end else
 begin
 rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L - 1 : 0]
 <= rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L : 1];
 if(32'(rose_a_then_fell_b_delay - `rose_a_then_fell_b_DL) > 2)
 rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L] <= rose_a_then_fell_b_fifo[0];
 if(32'(rose_a_then_fell_b_delay - `rose_a_then_fell_b_DL) == 0)
 rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L] <= s_a.triggered;
 if(32'(rose_a_then_fell_b_delay - `rose_a_then_fell_b_DL) == 1)
 rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L] <= rose_a_then_fell_b_s1_triggered;
 if(32'(rose_a_then_fell_b_delay - `rose_a_then_fell_b_DL) == 2) rose_a_then_fell_b_window[`rose_a_then_fell_b_WINDOW_L]
 <= rose_a_then_fell_b_s1_triggered_d0;

 rose_a_then_fell_b_fifo <= rose_a_then_fell_b_fifo >> 1;
 rose_a_then_fell_b_fifo [32'(rose_a_then_fell_b_delay - 1 - `rose_a_then_fell_b_DL)] <= s_a.triggered;
 rose_a_then_fell_b_s1_triggered_d0 <= rose_a_then_fell_b_s1_triggered;
 rose_a_then_fell_b_s1_triggered_d1 <= rose_a_then_fell_b_s1_triggered_d0;
 rose_a_then_fell_b_s1_triggered_d2 <= rose_a_then_fell_b_s1_triggered_d1;
 end
end
...

12

Example

• Assertions generated from SVAGen
• Only static delay are used

• Full proof with formal tool
shift reg Validity Window

1 0 0000 0 000
[999] [998] [997] [3] [2] [1] [0] [2] [1] [0]

property p_rose_a_then_fell_b;
 validity_window[2] |-> ##[0 : `DL + ̀ DH] rose_a_then_fell_b_triggered;
endproperty: p_rose_a_then_fell_b;

a_rose_a_then_fell_b : assert property(`CLK_SEQ p_rose_a_then_fell_b);

13

Problems discussed in the paper

• SVA language does not support dynamic delays
• Need to abstract the problem

• Need to develop an architecture that implement the solution

• Decouple Sequences, helper logic and assertions
• Sequences shall be developed as “standalone” library

• Shall be possible to try different type of helper logic models

• It should be easy to debug

• Automatic generation of inverted assertion

14

Example

• Assertions generated from SVAGen
• Inv assertion exploits Validity Window

• Validity Window stores info about past events

• Full proof with formal tool

property p_rose_a_then_fell_b_inv;
 rose_a_then_fell_b_triggered |-> validity_window !=
endproperty: p_rose_a_then_fell_b_inv;

a_rose_a_then_fell_b_inv : assert property(`CLK_SEQ p_rose_a_then_fell_b_inv);

shift reg Validity Window

0 1 0000 0 000
[999] [998] [997] [3] [2] [1] [0] [2] [1] [0]

15

Validation and results

• Time to find proof depends on 2 main factors:
• Interval of delay

• Range of delay

• Always used uncertainties of +/- 3

16

Conclusion

• Automatic handling of dynamic delay

• Automatic handling of inverse assertion

• Easy framework to switch auxiliary logic

• Reusable methodology for formal and simulation

• Tool is open sourced and available for download at this link

17

https://www.syosil.com/resources/open-source-software

Future developement

• Investigation for more efficient auxiliary logic

• Refactoring of SVAGen for better reusability

18

Questions

19

