

MUNICH, GERMANY DECEMBER 6 - 7, 2022

Using Open-Source EDA Tools in an Industrial Design Flow

<u>Daniela Sánchez Lopera</u>, Prajwal Kashyap, Nicolas Gerlin, Sven Wenzek, Wolfgang Ecker

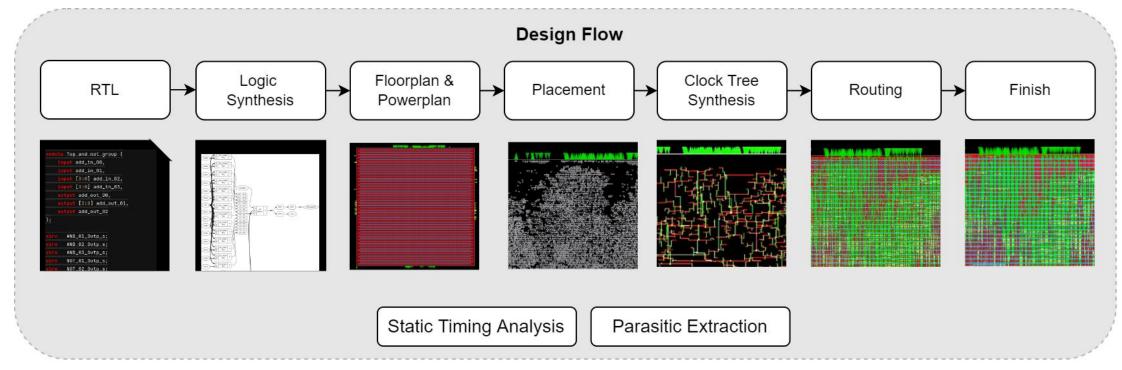
Outline

- Motivation
- Background Digital design flow
- What is OpenROAD?
- Our design flow
- Use Cases
- Results
- Summary & Conclusion

Motivation: Open-Source Software for EDA?

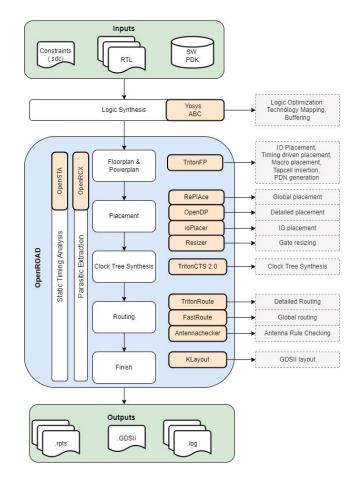
Advantages:

- Extensibility
- Accessibility
- Scalability


For **industries** even more:

- Playground for:
 - Students, researchers & inhouse trainings
- Suitable for:
 - Experiments
 - Collecting huge amount of data
 - Analysing design and flow
- Enabling:
 - Machine Learning (ML) applications
 - Innovation

Background Digital Design Flow



Images generated by OpenROAD using random die configuration and open-source PDK

- RTL-to-GDSII framework for design exploration and physical design implementation
- Three existing "flow controllers"
 - OpenROAD-flow-scripts1
 - OpenLANE²
 - Robust Design Flow (RDF)-2021³

¹ https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

² https://github.com/The-OpenROAD-Project/OpenLane

³ https://github.com/ieee-ceda-datc/datc-rdf

What is OpenROAD? Related work

ML applications optimizing tool configurations:

- LSOracle⁴
- OpenABC-D⁵
- VeriGOOD-ML⁶

ML applications learning from OpenROAD outcomes:

- Congestion⁷
- Arrival times and slack⁸

⁸ Guo, Zizheng, et al. "A Timing Engine Inspired Graph Neural Network Model for Pre-Routing Slack Prediction", DAC 2022.

⁴Neto, Walter, et al. "LSOracle: A logic synthesis framework driven by artificial intelligence", ICCAD 2019.

⁵ Chowdhury, Animesh Basak, et al. "OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis", arXiv preprint:2110.11292 (2021).

⁶ Esmaeilzadeh, Hadi, et al. "VeriGOOD-ML: An Open-Source Flow for Automated ML Hardware Synthesis", ICCAD 2021.

⁷Ghose, Amur, et al. "Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction", ICCAD 2021

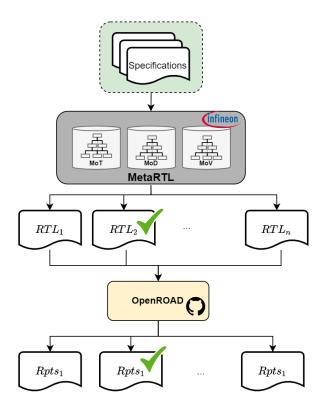
Challenges

Lück, C., Sánchez Lopera, D., Wenzek, S., & Ecker, W. Industrial Experience with Open-Source EDA Tools. MLCAD 2022

Adaptations on source code to cope with:

- Infrastructure restrictions: No super user, no Docker
- Proprietary PDKs
- Parallelization on compute farm

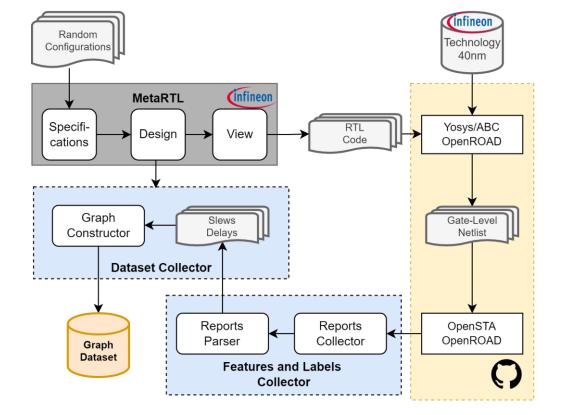
Envisioned use-cases


Lück, C., Sánchez Lopera, D., Wenzek, S., & Ecker, W. Industrial Experience with Open-Source EDA Tools. MLCAD 2022

Design Space Exploration

- Data generation for ML models
 - Design metric prediction

Sánchez Lopera D., Ecker W., Applying GNNs to Timing Estimation at RTL, ICCAD 2022. **MetaRTL**: Ecker, W., and Schreiner, J.. "Introducing Model-of-Things (MoT) and Model-of-Design (MoD) for simpler and more efficient hardware generators. *VLSI-SoC 2016*.



Envisioned use-cases

Lück, C., Sánchez Lopera, D., Wenzek, S., & Ecker, W. Industrial Experience with Open-Source EDA Tools. MLCAD 2022

- Design Space Exploration
- Data generation for ML models
 - Design metric prediction

Sánchez Lopera D., Ecker W., Applying GNNs to Timing Estimation at RTL, ICCAD 2022. **MetaRTL**: Ecker, W., and Schreiner, J.. "Introducing Model-of-Things (MoT) and Model-of-Design (MoD) for simpler and more efficient hardware generators. *VLSI-SoC 2016*.

Envisioned use-cases

Lück, C., Sánchez Lopera, D., Wenzek, S., & Ecker, W. Industrial Experience with Open-Source EDA Tools. MLCAD 2022

Configurations

Dataset Collector

Graph

Parser

Design Space Exploration

• D

How good are our ground truth labels coming from open-source tools?

Sánchez Lopera D., Ecker W., Applying GNNs to Timing Estimation at RTL, ICCAD 2022. **MetaRTL**: Ecker, W., and Schreiner, J.. "Introducing Model-of-Things (MoT) and Model-of-Design (MoD) for simpler and more efficient hardware generators. *VLSI-SoC 2016*.

-echnoloa\

sys/ABC

enROAD

OpenSTA

OpenROAD

Reports

Collector

Features and Labels

OpenROAD vs Commercial Tools

Feature	Open-source	Commercial
Extensibility	x	
Accesibility	x	
Scalability	x	
Customer Support		X
Reliability		x
Technology & Engineering		X
Workforce development	X	X

A Mixed Open-Source and Proprietary EDA Commons for Education and Prototyping Invited Paper. Andrew B. Kahng. ICCAD 2022

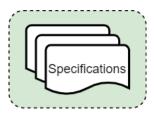
OpenROAD vs Commercial Tools

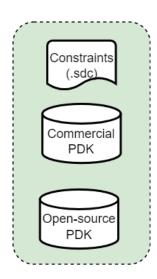
Feature	Open-source	Commercial
Extensibility	x	
Accesibility	x	
Scalability	×	
Customer Support		X
Reliability		X
Technology & Engineering		X
Workforce development	X	Х

Open and free software

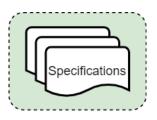
Years of experience and billions of investments

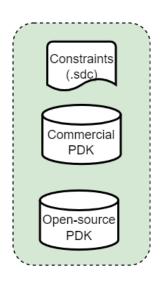
A Mixed Open-Source and Proprietary EDA Commons for Education and Prototyping Invited Paper. Andrew B. Kahng. ICCAD 2022


OpenROAD vs Commercial Tools


Feature	Open-source	Commercial	
Extensibility	x		
Accesibility	Х		Open and free software
Q:	1: But hov	v do they	compare w.r.t PPA results?
Technology & Engineering		X	
Workforce	X	Х	A Mixed Open-Source and Proprietary EDA Commons for Education

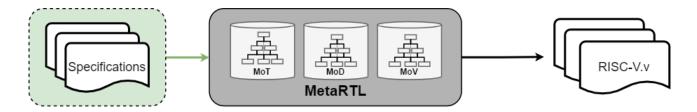
Our Design Flow (1) Inputs

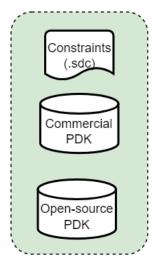




Our Design Flow (1) Inputs

PDK	Туре	# Lines Lib. File	# Standard Cells
40nm	Proprietary	14678.9 K	852
130nm	Open-source	333.5 K	753

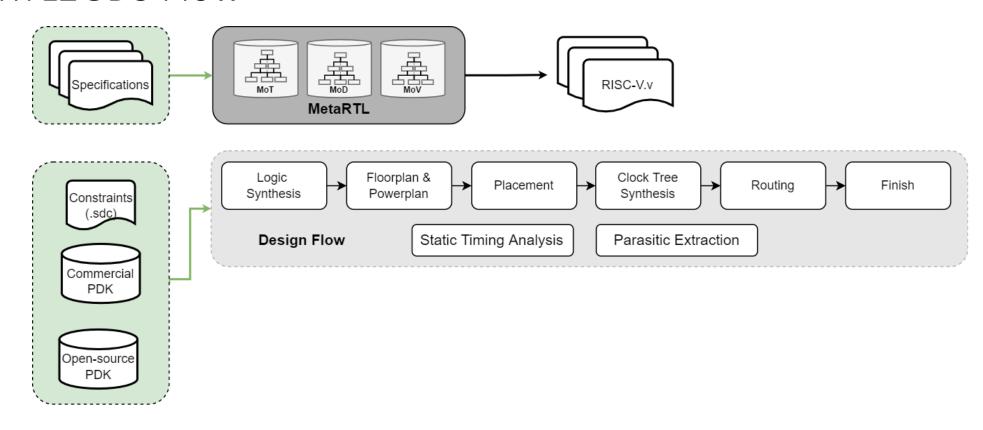

*Open-source: https://skywater-pdk.readthedocs.io/en/main/



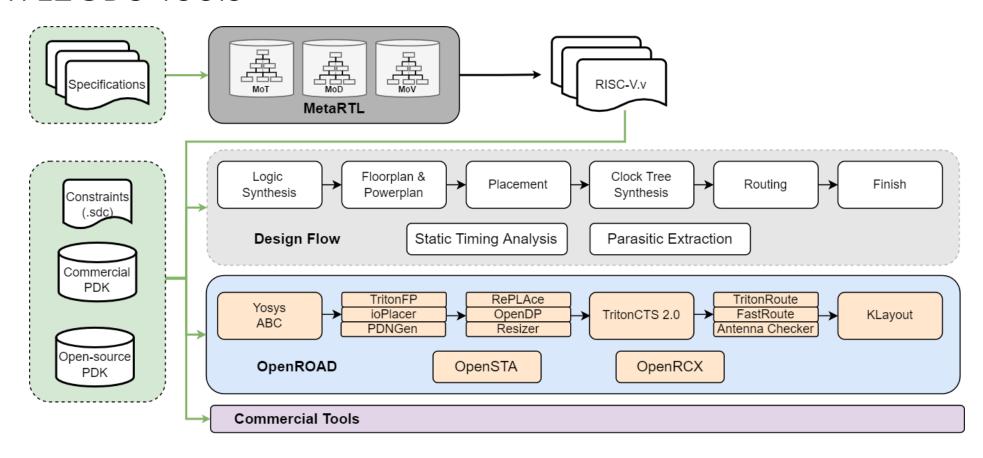
Our Design Flow (2)

RTL Generation

Advantages of using MetaRTL on top of OpenROAD:


- Using one programming language for hardware generation, synthesis flow and machine learning¹²
- Generation of properties for formal verification¹³

- ¹² K. Devarajegowda, et al., "Python based framework for HDSLs with an underlying formal semantics". ICCAD 2017
- ¹³ K. Devarajegowda, et al., "How to Keep 4-Eyes Principle in a Design and Property Generation Flow", MBMV 2019


Our Design Flow (3) RTL2GDS Flow

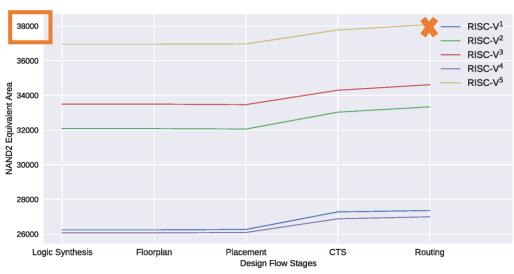
Our Design Flow (4) RTL2GDS Tools

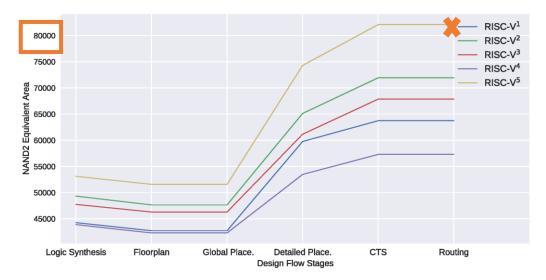
Generated Use-Cases RISC-V - RV32IMCX

Designs	Extension Units	# Lines of Code	# Components	# Input bits	# Output bits
RISC-V ¹	CRC, PFC	16496	810	71	157
RISC-V ²	Exception	28377	1430	170	164
RISC-V ³	MAC	39487	2271	171	164
RISC-V ⁴	Event Counters	16391	844	70	157
RISC-V ⁵	CRC, PFC, MAC, Event Counters, Exception	42121	2403	170	165

Generated Use-Cases RISC-V

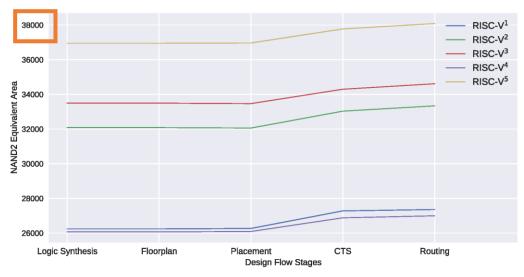
Designs	Extension Units	# Lines of Code	# Components	# Input bits	# Output bits	Complexity Flag
RISC-V ¹	CRC, PFC	16496	810	71	157	+
RISC-V ²	Exception	28377	1430	170	164	++
RISC-V ³	MAC	39487	2271	171	164	++
RISC-V ⁴	Event Counters	16391	844	70	157	+
RISC-V ⁵	CRC, PFC, MAC, Event Counters, Exception	42121	2403	170	165	+++

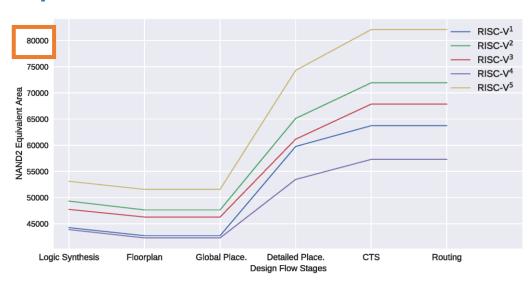

Post Routing Results


Results (1) Post Routing – Area

Commercial Tool

$$Avg.ratio = \frac{1}{5} \sum \frac{Yosys/OpenROAD}{Commercial\ Tool}\ \forall\ RISC-V$$


OpenROAD

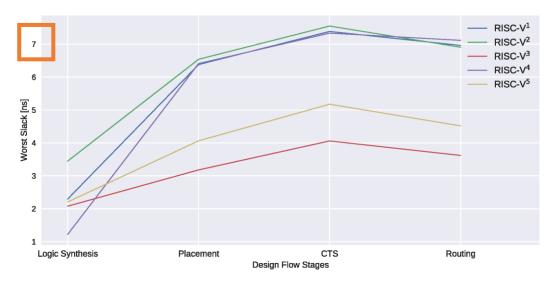


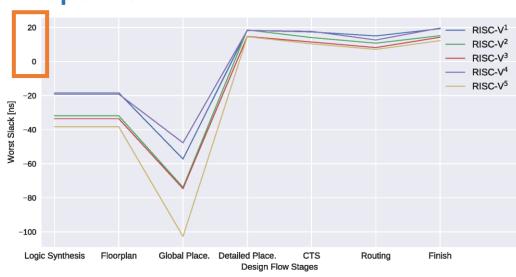
Results (1) Post Routing – Area

Commercial Tool

OpenROAD

Averaging the results for all 5 RISC-Vs, OpenROAD occupies more area:


- NAND2 Eq. Area: 2.1x more area
- # Standard Cells: 2.4x more cells



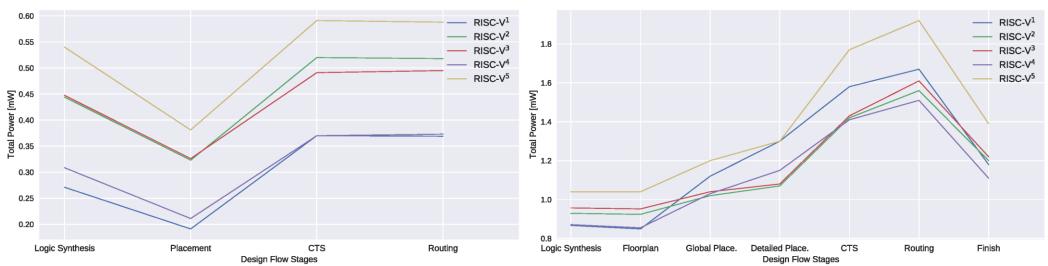
Results (2) Post Routing – Worst Slack

Commercial Tool

OpenROAD

Averaging the results for all 5 RISC-Vs, OpenROAD worst slack after routing is:

• Critical path worst slack: 2.9x higher



Results (3) Post Routing – Total Power

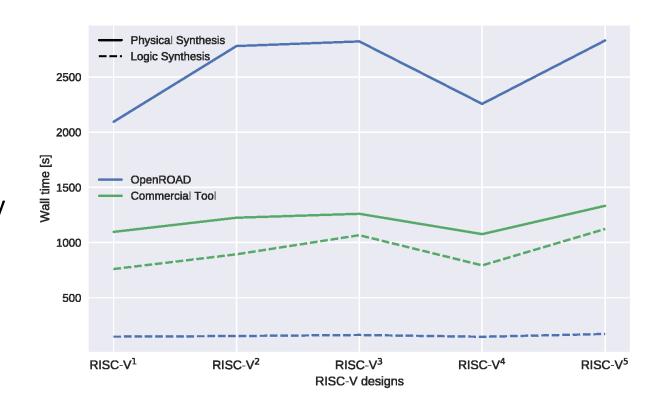
Commercial Tool

OpenROAD

Averaging the results for all 5 RISC-Vs, OpenROAD consumes more power:

• Total power: 2.7x more

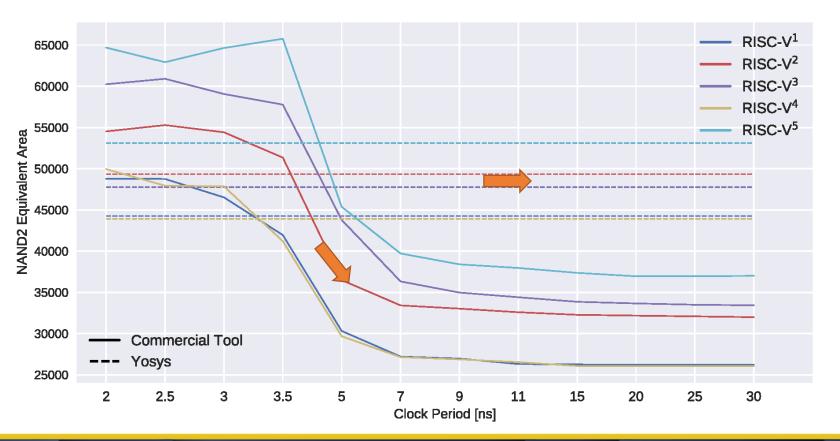
Runtimes



Results (4) Wall times – Routing

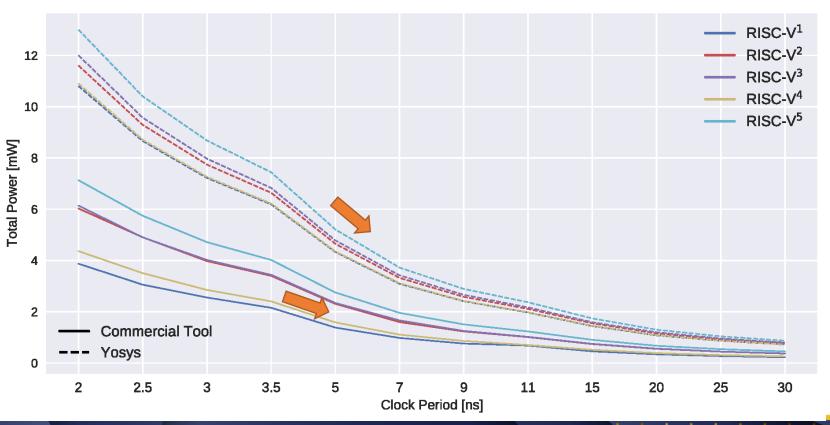
- Under fair conditions:
 - No multi-threading
 - Same CPU:

Linux CPU Intel[®] Xeon[®] Gold 6248R at 3.00 GHz and 80 GiB system memory



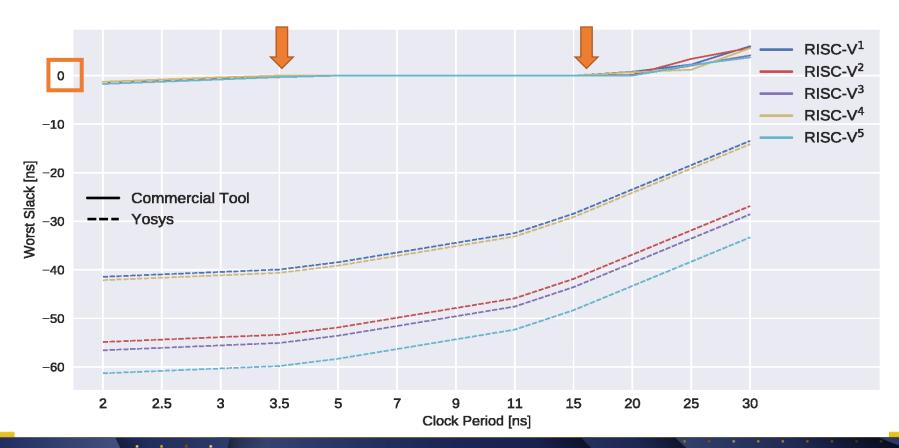
Sweeping clock

Results (5) Sweeping clock - Logic Synthesis - Area


OpenROAD keeps area constant while varying clock period

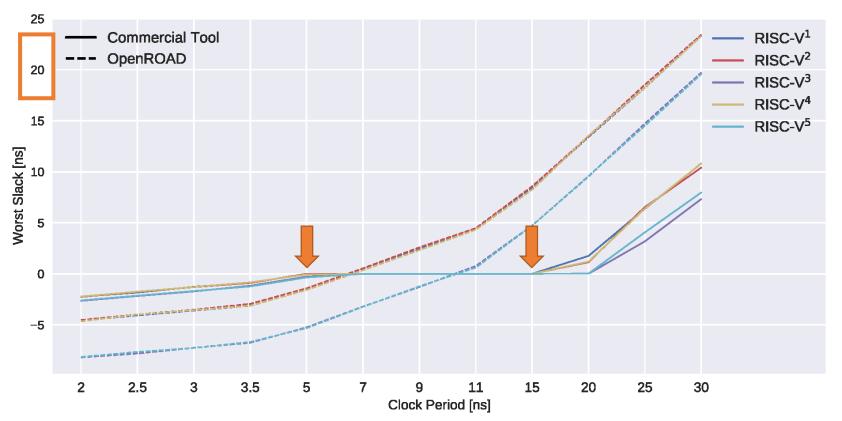
Results (6)

Sweeping clock - Logic Synthesis - Power



Higher clock, less total power

Results (7) Sweeping clock - Logic Synthesis - Worst Slack



OpenROAD needs very high clock periods for meeting timing requirements after logic synthesis

Results (8) Sweeping clock – Routing - Worst Slack

OpenROAD needs higher clocks for meeting timing requirements after routing

Summary

Q1: But how do they compare w.r.t PPA results?

Summary

Stage	Ratio [Open-Source Tool/Commercial Tool]			
	NAND2 Eq. Area	# Standard Cells	WS	Total Power
Post logic synthesis	1.5	1.8	<0	2.4
Post routing	2.1	2.4	2.9	2.7

Avg = 2.5x

^{*} For PDK 40nm

^{*} For flatten synthesis

^{*} For clock 25ns

Summary

- * For flatten synthesis
- * For clock 25ns

Conclusion


- We outline our industrial flow from initial specifications to GDS using different RISC-Vs as use cases.
- Averaging the reported post-routing PPA factors for a 25 ns clock period, the commercial tool outperforms OpenROAD by a factor of 2.52x.
- The **commercial tool is faster** without any parallelization, and it **meets timing constraints for lower clock periods** than OpenROAD.

Conclusion

But OpenROAD is evolving fast: more than 1.4K commits in 2022 and 19 active pull requests¹⁴.

https://github.com/The-OpenROAD-Project/OpenROAD/graphs/commit-activity. Visited on Dec. 05, 2022.

Future:

- Commercial and open-source EDA working together to enable research and progress on the field
- Analyze generated output of commercial tools using OpenROAD and vice versa

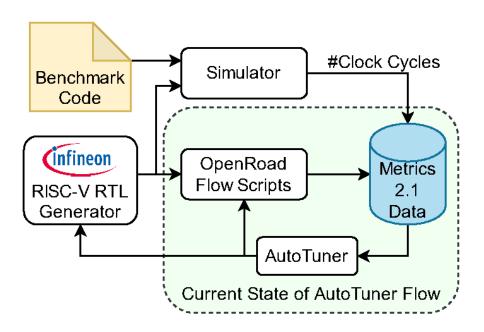
Questions?

Thank you!

What is OpenROAD? Related work

OpenROAD published papers describe some attempts of benchmarking:

- Number of commits, citations, community engagement⁹
- Comparing results of their AutoTuner with two different SkyWater libraries¹⁰
- Comparing the OpenROAD placer, OpenSTA and OpenRCX w.r.t commercial tools¹¹


⁹ Jung, Jinwook, et al. "METRICS2. 1 and Flow Tuning in the IEEE CEDA Robust Design Flow and OpenROAD ICCAD Special Session Paper", ICCAD 2021. ¹⁰ A. B. Kahng, "Looking into the Mirror of Open Source: Invited Paper", *ICCAD 2019*

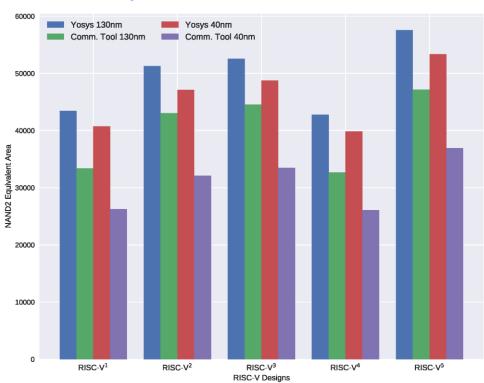
¹¹ A. B. Kahng and T. Spyrou, "The OpenROAD Project: Unleashing Hardware Innovation", GOMAC 2021

What is OpenROAD?

Envisioned use-cases

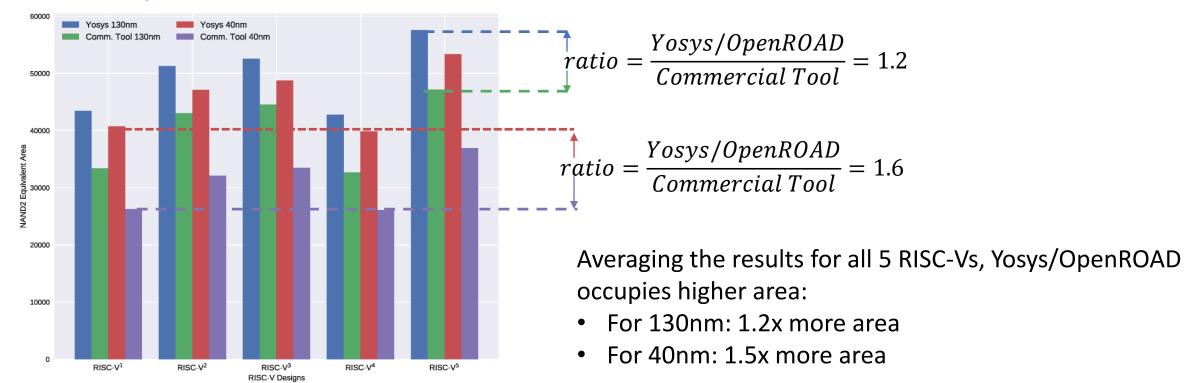
• Design Space Exploration (DSE)

Lück, C., Sánchez Lopera, D., Wenzek, S., & Ecker, W. Industrial Experience with Open-Source EDA Tools. MLCAD 2022


Post Logic Synthesis Results

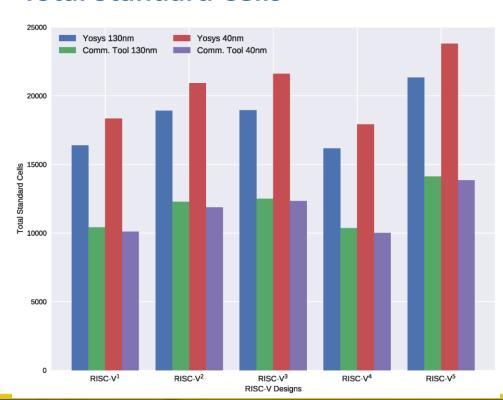
Results (1) Post Logic Synthesis – Area

NAND2 Equivalent Area



Results (1) Post Logic Synthesis – Area

NAND2 Equivalent Area



Results (2) Post Logic Synthesis – Area

Total Standard Cells

Averaging the results for all 5 RISC-Vs, Yosys/OpenROAD occupies higher area:

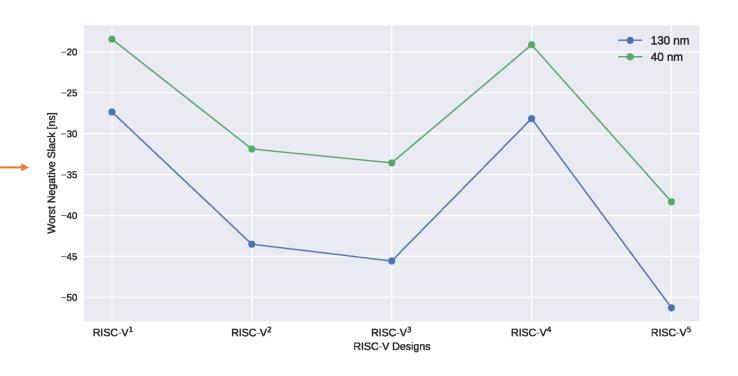
For 130nm: 1.5x more cells

For 40nm: 1.8x more cells

Results (3) Post Logic Synthesis – Worst Negative Slack (WNS)

For both PDKs: 130nm and 40nm

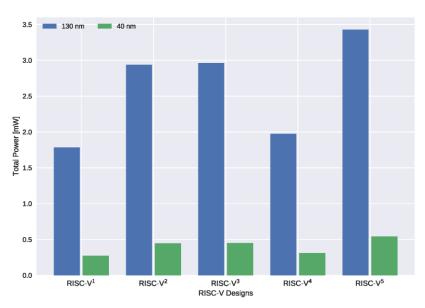
Synthesis Type	Commercial Tool	OpenROAD
Flatten	0	<0
Non-flatten (hierarchical)	0	0

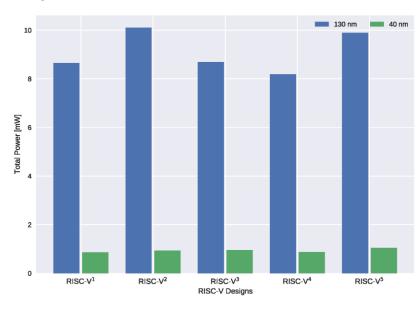


Results (3) Post Logic Synthesis – Worst Negative Slack (WNS)

For both PDKs: 130nm and 40nm

Synthesis Type	Commercial Tool	OpenROAD
Flatten	0	<0
Non-flatten (hierarchical)	0	0

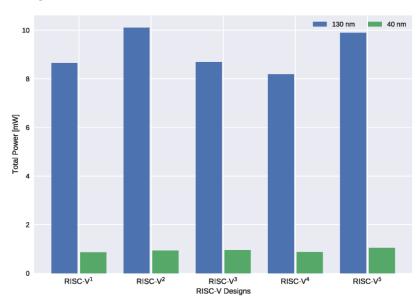




Results (4) Post Logic Synthesis – Total Power

Commercial Tool

OpenROAD



Results (4) Post Logic Synthesis – Total Power

Commercial Tool

3.5 130 nm 40 nm 3.0 2.5 1.0 0.5 RISC-V¹ RISC-V² RISC-V³ RISC-V⁴ RISC-V⁵

OpenROAD

Averaging the results for all 5 RISC-Vs, Yosys/OpenROAD consumes more power:

- For 130nm: 3.8x more power
- For 40nm: 2.4x more power

Results (4) Post Logic Synthesis – Total Power

Averaging the results for all 5 RISC-Vs, Yosys/OpenROAD consumes more power:

- For 130nm: 3.8x more power
- For 40nm: 2.4x more power

