

1

A novel approach to standardize reusable Modular

Plug and Play Skeleton Structure (MPPSS) to

expedite verification closure

Himanshu Dixit, Senior Staff Engineer , Samsung Semiconductors India Research, Bangalore , India

(hd.dixit@samsung.com)

Chandrachud Murali, Associate Staff Engineer, Samsung Semiconductors India Research, Bangalore ,

India (chandru.m@samsung.com)

Sriram Kazhiyur Soundarrajan, Associate Director, Samsung Semiconductors India Research,

Bangalore , India (sriram.k.s @samsung.com)

Somasunder Kattepura Sreenath, Director, Samsung Semiconductors India Research, Bangalore ,

India (soma.ks@samsung.com)

Abstract— With time to market and first pass silicon being crucial factors defining the success of an organization,

challenges have become manifold in delivering good quality DV deliverables. System on Chip (SoC) designs have become

more challenging with complex functions implemented on hardware with increased complexity in IPs. With this increased

complexity, the runtime of the simulation has increased manifold. With time to market being a significant factor, delays

arising from run times not only requires budgeting but also needs to be mitigated by out of the box thinking and solutions,

beginning from the planning phase. The paper explains the strategy used for verifying MIPI CSI at different abstraction

levels with reusable architectural components by Modular Plug and Play Skeleton Structure (MPPSS) that can be leveraged

across IPs. This “divide and conquer” method has been in existence for quite long but without a standardization of

architecture, approach and different scopes targeted at different abstraction levels. The novelty of MPPSS lies in

intelligently pre-visualizing the modular reusable components, subsystem smoke test sets based on design implementation,

planning, reuse and sim speed optimization resulting in early bug detection and scenario optimization. The MPPSS

architecture resulted in optimizing scenarios by ~91% at SoC and ~82% at the sub-system level for flow flush, ~85% early

bug detection apart from saving 5.5x (~70000 hours) on sim time and around $27000 of license cost.

Camera system is data intensive in terms of both volume and compute due to performance and quality requirements.

The scenarios required for verification depends on the formats, lanes supported, format conversion, upscaling and

downscaling features that are supported by the system. The runtime benchmarking from previous projects led us to an

anticipation of a humungous runtime (approx. 12-16 hrs.) in RTL simulation. The simulation numbers revealed that having

a separate subsystem and SoC environment will not be sufficient to thoroughly close the verification activity on time with

due quality. The need for a tight coupling between SoC and sub-system verification beyond stand-alone closure resulted in

the SoC team owning the sub-system. Basic data path, core features, clocking, power scheme tests, GPIO connection,

interrupt tests and toggle coverage requires the tests to be run at SoC level of abstraction. Modular standalone blocks,

which are specific to IPs in the sub-system, were encapsulated for scaling at different level of abstraction. The wrappers

built around the encapsulated verification components resulted in direct reuse of the sequence, interfaces and monitors

(Figure 1).

The sub-system comprises of reusable / non-reusable multiple modular stand-alone blocks.

1. Reusable blocks

a. Third party or vendor procured blocks (C/DPHY VIPs and AXI VIPs)

b. In-house developed blocks - interfaces, monitors, sequences

c. DUT blocks – PHY, Controller, Image processor, soft logic within the block

2. Non-reusable blocks

mailto:hd.dixit@samsung.com
mailto:harshal.k1@samsung.com
mailto:harshal.k1@samsung.com
mailto:soma.ks@samsung.com
mailto:soma.ks@samsung.com

2

a. Static signal drivers

b. Soft logic specific to SoC

Initial estimates based on the partition of the environment and taking into consideration the different reusable

modules at different abstraction levels, the effort required to complete the SoC verification was estimated to be at

least 75% lower in comparison with full closure at SoC abstraction.

Figure 1. Subsystem Test bench Environment

The formats supported by the system included RAW8 and RAW10. The resolutions supported were RAW8 -

512x512 and 640x640, RAW10 - 1280x720, 16x1080, 16x512, 1920x1080, 1920x16, 512x16, 512x512 and

640x640. The 2 format 10 resolution system supporting different lane, speed and PHY combinations resulted in

compounding the verification effort resulting in a need to cover 46000 scenarios. The MIPI CSI Protocol has

numerous configuration parameters like virtual channel, different data formats, number of lanes, different

resolutions et c. The features were classified into 2 groups image properties – that includes the use case format and

resolutions hardware properties that has different hardware configurations applicable for the image sensing

operation. Considering the most used lane multiplexing configurations and PHY configurations, a subset of the

total combinations was identified as the smoke test set to ensure the working of the most applicable use cases.

There was an another need to create a subsystem smoke suite considering the nature of the design, the volume of

test combinations and the very fact that the co-operation of the different components was being tested for the first

time. Table 1 describes the different possible scenarios for each kind of image sent along the Camera sub-system.

The smoke suite, in turn became the qualification criteria for each successive releases resulting in providing faster

feedback on use case issues and confidence for the SoC level verification engineers to proceed with their testing.

With thorough analysis of use case and design implementation, the smoke suite of the sub-system was further

trimmed to cater to the SoC abstraction qualification requirements. The smoke suites in conjunction resulted in

qualifying design at different abstraction levels and saving precious time of the verification engineers. The

approach had a lesson learnt on the optimization of scenarios considering that 2 bugs were not detected by smoke,

resulting in updating the smoke suite at a later stage.

3

No.

of

activ

e

lane

s

PHY type
Speed of

transfer

Lane

multiplexin

g

Total

combinatio

ns of the

scenarios

possible

Smoke test

set at the

Sub-system

level

Percentage

decrease in

scenarios

(smoke)

Total

number of

scenarios

run at SoC

level

Perce

ntage

decre

ase in

scena

rios

(SoC)

Bugs

found

in

sub-

syste

m

4

DPHY

4 slow lanes Random 240 42 82.5 18 92.5 3

2 slow lanes +

1 fast lane

Straight

ahead
60 11 81.7 2 96.7 0

2 fast lanes
Straight
ahead

10 2 80 1 90 1

CPHY

4 slow lanes Random 240 52 78.3 22 90.8 4

2 slow lanes +

1 fast lane

Straight

ahead
60 12 80 2 96.7 2

2 fast lanes
Straight
ahead

10 2 80 1 90 1

3

DPHY

3 slow lanes Random 960 142 85.2 82 91.4 2

1 slow lane +

1 fast lane

Straight

ahead
120 28 76.7 2 98.3 0

CPHY

3 slow lanes Random 960 145 84.9 85 91.1 3

1 slow lanes +

1 fast lane

Straight

ahead
120 31 74.1 2 98.3 1

2

DPHY

2 slow lanes Random 720 132 81.7 62 91.4 2

1 fast lane
Straight

ahead
40 12 70 6 85 0

CPHY

2 slow lanes Random 720 138 81.7 65 90.9 3

1 fast lane
Straight
ahead

40 14 65 6 85 0

1
DPHY 1 slow lane Random 160 18 88.7 8 95 2

CPHY 1 slow lane Random 160 21 86.8 12 92.5 2

Total 4620 802 82.6 376 91.8 26

Table 1. Design related scenario combinations

While developing the sequence of programming for the different IPs, the sub system acted as the benchmark for

qualification of the sequence to be used at SoC level abstraction. The sequence development had multiple

challenges arising due to iterative corrections of programming guide, design changes and customer requirement

changes. The golden sequence qualified by subsystem abstraction was readily plugged at SoC abstraction resulting

in saving enormous run times during the iterative golden sequence development phase for all data paths. The

concept was widely appreciated by all stakeholders considering the fact that the data path bring up was completed

in a span of 3 days which otherwise would have taken 2 – 3 weeks. A total of 14 critical integration issues of the

IPs within the sub-system were found in a span of less than 1 month. 12 more issues were caught in the next few

weeks resulting in ZERO ECOs for the project.

The lower level abstraction verification ensured that all integration bugs between the functional IPs are

identified and fixed. At SoC abstraction, the challenge arises due to soft macro inclusions, which cater to

power/clock/interrupt and other management units. The closure of verification at lower abstraction resulted in

ensuring ZERO functional issues of the subsystem at SoC. A total of 5 bugs were identified at SoC abstraction

arising due to soft macro implementation. The lower level abstraction was utilized to clean up zero-time simulation

as well for the first time resulting in early flow flush for the verification changes arising due to netlist environment.

Coverage sign off typically used to have 17 - 23 iterations in SoC regression which eventually requires ~1 - 2

months to exercise the intended scenario and close in the merged coverage. However, the reusable component and

sub-system for DV code coverage facilitated the coverage closure within 5-6 iterations of regression.

4

Simulati

on

Flavor

(Simulat

ion time

in

minutes)

Test category

Reusable

from sub-

system to

SoC? (Y/N)

Average SoC

simulation

time

Average

subsystem

simulation

time

Improvem

ent factor

Total SoC

Simulation

time per

iteration

(without

SS)

Total SoC

Simulation

time per

iteration

(with SS)

Percentage

reduction

in SoC

simulation

time

RTL

4 sensor

parallel
Y 390 18 21.67 46800 12120 74.1

2 sensor
parallel

Y 480 21 22.86 163200 76800 52.9

Register

access
N 240 9 26.67 2160 2160 0

Clock gating N 210 7 30 840 840 0

Interrupt

Scenario
N 330 12 27.5 2640 2640 0

GLS

(Unit
Delay)

4 sensor

parallel
NA 690 21 32.86 8280 8280 NA

2 sensor

parallel
NA 870 23 37.83 29580 29580 NA

Use case

scenario
NA 780 21.5 36.28 7800 7800 NA

POST-
GLS

(Timing

+ SDF)

4 sensor

parallel
NA 930 NA NA 11160 11160 NA

2 sensor

parallel
NA 1020 NA NA 31620 31620 NA

 Table 2. SoC simulation vs. Sub-system simulation time

THE MPPSS ARCHITECTURE

The verification effort and simulation time reductions based on CSI verification activity kindled an interest in the

quantification of the results. The results were encouraging to take this architecture further as a generic flow that can

be reused across different IPs. Based on the fine-tuning, a generic architecture, a Modular Plug and Play Skeleton

Structure(MPPSS) was developed with guidelines for verification engineers to leverage this architecture across any

High Speed Protocol Interface IPs.

Figure 2. MPPSS Architecture

SoC DV root
($TB_HOME)

Sub-system DV
root

($TB_HOME/ss/)

Testbench
($TB_HOME/ss/tb/

)

UVM Components
($TB_HOME/ss/tb/

env/)

Reusable
($TB_HOME/ss/tb/

env/*mon.sv)
Tightly coupled

Modules and
interfaces

($TB_HOME/ss/tb/
top/)

Reusable
($TB_HOME/ss/tb/

top/*intf.sv)
Tightly coupled

Sequences
($TB_HOME/ss/lib/

)

Third party
sequences

($TB_HOME/ss/lib/
cdn)

Reusable Tightliy coupled

Custom sequences
($TB_HOME/ss/lib/

seq)

Reusable Tightly coupled

5

The structure of MPPSS architecture shown in Figure 2 represents the generic architecture deployed. $TB_HOME

represents the top verification directory. The testbench and sequences components are split at first abstraction level

to differentiate the root cause of issue during both debug and plug & play. The testbench represents the static

component during simulation that includes block configuration, interfaces, monitors etc. The sequence represents

the programming sequence and other dynamic SV-UVM objects, which affect the simulation progress. The clear

demarcation between static and dynamic components are enabled to flow flush higher abstraction in static

environment while lower abstraction makes progress on dynamic environment cleanup. This results in parallel

progress at different abstraction levels. The components are further segregated as reusable and non-reusable

components to minimize the plug and play porting efforts

Reusability of verification components is a vital process that benefits overall cycle of verification especially when

different aspects of verification is covered at different levels of abstraction. The MPPSS based approach compared

to a stand-alone and separate verification at SoC and Sub-System is very beneficial in multiple aspects like

reduction of simulation time, resources, better controllability, coverage collection, early bug detection, license/slot

time saving and data integrity.

Figure 3. Generic MPPSS development cycle

The architecture has been successfully tested across high-speed interface IPs like PCIe, USB and Display on the

ongoing projects. The success of the architecture warranted a wide spread deployment. A through internal audit

with verification experts have been carried out on MPPSS architecture. The audit team have recommended

enhancements for better error message display management and request for GLS support. Majority of the reviewer’s

kick started the deployment of the generic architecture across multiple SoC/Sub System DV teams.

REFERENCES

[1] Pavithran, T.M. & Bhakthavatchalu, Ramesh (2017). UVM based testbench architecture for logic sub-system verification. 2017

International Conference on Technological Advancements in Power and Energy (TAP Energy), doi:

10.1109/TAPENERGY.2017.8397323

[2] Juan Francesconi, J. Agustin Rodriguez and Pedro M. Julian, "UVM-Based Testbench Architecture for Unit Verification", 2014

Argentine Conference on Micro-Nanoelectronics, Technology and Applications (EAMTA), doi: 10.1109/EAMTA.2014.6906085

[3] UVM User Guide 1.2 Accellera, pp. 1-8, October 2015.

[4] MIPI Alliance Specification for D-PHY version 1.2, Sep 2014.

Identification
of

non/reusable
componenets

Isolate non
reusable

blocks for
higher

abstraction DV

Modify Path/
Env variable

for New SS DV

Set flow ctrol
scripts for

Higher
Abstraction

DV

Clean up Sub
System DV

Reuse and
Setup

datapath at
higher

abstraction

Coverage and
Corner Cases

Review and
Closure of
handshake

between diff
abstraction

levels

6

[5] MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) version 2.0, 7 Dec 2016.

[6] MIPI Alliance Standard for Camera PHY (C-PHY) version 1.1, 7 Oct 2015.

[7] MIPI Alliance Standard for Display PHY (D-PHY) version 2.0, 23 Nov 2015.

