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Abstract— With time to market and first pass silicon being crucial factors defining the success of an organization, 

challenges have become manifold in delivering good quality DV deliverables. System on Chip (SoC) designs have become 

more challenging with complex functions implemented on hardware with increased complexity in IPs. With this increased 

complexity, the runtime of the simulation has increased manifold. With time to market being a significant factor, delays 

arising from run times not only requires budgeting but also needs to be mitigated by out of the box thinking and solutions, 

beginning from the planning phase.  The paper explains the strategy used for verifying MIPI CSI at different abstraction 

levels with reusable architectural components by Modular Plug and Play Skeleton Structure (MPPSS) that can be leveraged 

across IPs. This “divide and conquer” method has been in existence for quite long but without a standardization of 

architecture, approach and different scopes targeted at different abstraction levels. The novelty of MPPSS lies in 

intelligently pre-visualizing the modular reusable components, subsystem smoke test sets based on design implementation, 

planning, reuse and sim speed optimization resulting in early bug detection and scenario optimization. The MPPSS 

architecture resulted in optimizing scenarios by ~91% at SoC and ~82% at the sub-system level for flow flush, ~85% early 

bug detection apart from saving 5.5x (~70000 hours) on sim time and around $27000 of license cost. 

Camera system is data intensive in terms of both volume and compute due to performance and quality requirements. 

The scenarios required for verification depends on the formats, lanes supported, format conversion, upscaling and 

downscaling features that are supported by the system.  The runtime benchmarking from previous projects led us to an 

anticipation of a humungous runtime (approx. 12-16 hrs.) in RTL simulation. The simulation numbers revealed that having 

a separate subsystem and SoC environment will not be sufficient to thoroughly close the verification activity on time with 

due quality. The need for a tight coupling between SoC and sub-system verification beyond stand-alone closure resulted in 

the SoC team owning the sub-system. Basic data path, core features, clocking, power scheme tests, GPIO connection, 

interrupt tests and toggle coverage requires the tests to be run at SoC level of abstraction. Modular standalone blocks, 

which are specific to IPs in the sub-system, were encapsulated for scaling at different level of abstraction. The wrappers 

built around the encapsulated verification components resulted in direct reuse of the sequence, interfaces and monitors 

(Figure 1). 

The sub-system comprises of reusable / non-reusable multiple modular stand-alone blocks. 

1. Reusable blocks 

a. Third party or vendor procured blocks (C/DPHY VIPs and AXI VIPs) 

b. In-house developed blocks - interfaces, monitors, sequences 

c. DUT blocks – PHY, Controller, Image processor, soft logic within the block 

2. Non-reusable blocks 
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a. Static signal drivers 

b. Soft logic specific to SoC 

Initial estimates based on the partition of the environment and taking into consideration the different reusable 

modules at different abstraction levels, the effort required to complete the SoC verification was estimated to be at 

least 75% lower in comparison with full closure at SoC abstraction. 

 

 
 

Figure 1. Subsystem Test bench Environment 

 

The formats supported by the system included RAW8 and RAW10. The resolutions supported were RAW8 - 

512x512 and 640x640, RAW10 - 1280x720, 16x1080, 16x512, 1920x1080, 1920x16, 512x16, 512x512 and 

640x640. The 2 format 10 resolution system supporting different lane, speed and PHY combinations resulted in 

compounding the verification effort resulting in a need to cover 46000 scenarios. The MIPI CSI Protocol has 

numerous configuration parameters like virtual channel, different data formats, number of lanes, different 

resolutions et c. The features were classified into 2 groups image properties – that includes the use case format and 

resolutions hardware properties that has different hardware configurations applicable for the image sensing 

operation. Considering the most used lane multiplexing configurations and PHY configurations, a subset of the 

total combinations was identified as the smoke test set to ensure the working of the most applicable use cases. 

There was an another need to create a subsystem smoke suite considering the nature of the design, the volume of 

test combinations and the very fact that the co-operation of the different components was being tested for the first 

time. Table 1 describes the different possible scenarios for each kind of image sent along the Camera sub-system. 

The smoke suite, in turn became the qualification criteria for each successive releases resulting in providing faster 

feedback on use case issues and confidence for the SoC level verification engineers to proceed with their testing. 

With thorough analysis of use case and design implementation, the smoke suite of the sub-system was further 

trimmed to cater to the SoC abstraction qualification requirements. The smoke suites in conjunction resulted in 

qualifying design at different abstraction levels and saving precious time of the verification engineers.  The 

approach had a lesson learnt on the optimization of scenarios considering that 2 bugs were not detected by smoke, 

resulting in updating the smoke suite at a later stage.  

 



 

3 

 

No. 

of 
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e 
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s 

PHY type 
Speed of 

transfer 
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multiplexin

g 

Total 

combinatio

ns of the 

scenarios 

possible 

Smoke test 

set at the 

Sub-system 

level 

Percentage 
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scenarios 

(smoke) 

Total 

number of 
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run at SoC 

level  
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ntage 
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(SoC) 

Bugs 

found 

in 

sub-

syste

m  

4 

DPHY 

4 slow lanes Random 240 42 82.5 18 92.5 3 

2 slow lanes + 

1 fast lane 

Straight 

ahead 
60 11 81.7 2 96.7 0 

2 fast lanes 
Straight 
ahead 

10 2 80 1 90 1 

CPHY 

4 slow lanes Random 240 52 78.3 22 90.8 4 

2 slow lanes + 

1 fast lane 

Straight 

ahead 
60 12 80 2 96.7 2 

2 fast lanes 
Straight 
ahead 

10 2 80 1 90 1 

3 

DPHY 

3 slow lanes Random 960 142 85.2 82 91.4 2 

1 slow lane + 

1 fast lane 

Straight 

ahead 
120 28 76.7 2 98.3 0 

CPHY 

3 slow lanes Random 960 145 84.9 85 91.1 3 

1 slow lanes + 

1 fast lane 

Straight 

ahead 
120 31 74.1 2 98.3 1 

2 

DPHY 

2 slow lanes Random 720 132 81.7 62 91.4 2 

1 fast lane 
Straight 

ahead 
40 12 70 6 85 0 

CPHY 

2 slow lanes Random 720 138 81.7 65 90.9 3 

1 fast lane 
Straight 
ahead 

40 14 65 6 85 0 

1 
DPHY 1 slow lane Random 160 18 88.7 8 95 2 

CPHY 1 slow lane Random 160 21 86.8 12 92.5 2 

Total 4620 802 82.6 376 91.8 26 

 

Table 1. Design related scenario combinations 

 

While developing the sequence of programming for the different IPs, the sub system acted as the benchmark for 

qualification of the sequence to be used at SoC level abstraction. The sequence development had multiple 

challenges arising due to iterative corrections of programming guide, design changes and customer requirement 

changes. The golden sequence qualified by subsystem abstraction was readily plugged at SoC abstraction resulting 

in saving enormous run times during the iterative golden sequence development phase for all data paths. The 

concept was widely appreciated by all stakeholders considering the fact that the data path bring up was completed 

in a span of 3 days which otherwise would have taken 2 – 3 weeks. A total of 14 critical integration issues of the 

IPs within the sub-system were found in a span of less than 1 month. 12 more issues were caught in the next few 

weeks resulting in ZERO ECOs for the project. 

The lower level abstraction verification ensured that all integration bugs between the functional IPs are 

identified and fixed. At SoC abstraction, the challenge arises due to soft macro inclusions, which cater to 

power/clock/interrupt and other management units. The closure of verification at lower abstraction resulted in 

ensuring ZERO functional issues of the subsystem at SoC. A total of 5 bugs were identified at SoC abstraction 

arising due to soft macro implementation. The lower level abstraction was utilized to clean up zero-time simulation 

as well for the first time resulting in early flow flush for the verification changes arising due to netlist environment. 

Coverage sign off typically used to have 17 - 23 iterations in SoC regression which eventually requires ~1 - 2 

months to exercise the intended scenario and close in the merged coverage. However, the reusable component and 

sub-system for DV code coverage facilitated the coverage closure within 5-6 iterations of regression. 
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Simulati

on 

Flavor 

(Simulat

ion time 

in 

minutes) 

Test category 

Reusable 

from sub-

system to 

SoC? (Y/N) 

Average SoC 

simulation 

time 

Average 

subsystem 

simulation 

time 

Improvem

ent factor 

Total SoC 

Simulation 

time per 

iteration 

(without 

SS) 

Total SoC 

Simulation 

time per 

iteration 

(with SS) 

Percentage 

reduction 

in SoC 

simulation 

time 

RTL 

4 sensor 

parallel 
Y 390 18 21.67 46800 12120 74.1 

2 sensor 
parallel 

Y 480 21 22.86 163200 76800 52.9 

Register 

access 
N 240 9 26.67 2160 2160 0 

Clock gating N 210 7 30 840 840 0 

Interrupt 

Scenario 
N 330 12 27.5 2640 2640 0 

GLS 

(Unit 
Delay) 

4 sensor 

parallel 
NA 690 21 32.86 8280 8280 NA 

2 sensor 

parallel 
NA 870 23 37.83 29580 29580 NA 

Use case 

scenario 
NA 780 21.5 36.28 7800 7800 NA 

POST-
GLS 

(Timing 

+ SDF) 

4 sensor 

parallel 
NA 930 NA NA 11160 11160 NA 

2 sensor 

parallel 
NA 1020 NA NA 31620 31620 NA 

 

                                                              Table 2. SoC simulation vs. Sub-system simulation time 

THE MPPSS ARCHITECTURE 

The verification effort and simulation time reductions based on CSI verification activity kindled an interest in the 

quantification of the results. The results were encouraging to take this architecture further as a generic flow that can 

be reused across different IPs. Based on the fine-tuning, a generic architecture, a Modular Plug and Play Skeleton 

Structure(MPPSS) was developed with guidelines for verification engineers to leverage this architecture across any 

High Speed Protocol Interface IPs. 

 

Figure 2. MPPSS Architecture 

SoC DV root 
($TB_HOME)

Sub-system DV 
root 

($TB_HOME/ss/)

Testbench 
($TB_HOME/ss/tb/

)

UVM Components 
($TB_HOME/ss/tb/

env/)

Reusable 
($TB_HOME/ss/tb/

env/*mon.sv)
Tightly coupled

Modules and 
interfaces 

($TB_HOME/ss/tb/
top/)

Reusable 
($TB_HOME/ss/tb/

top/*intf.sv)
Tightly coupled

Sequences 
($TB_HOME/ss/lib/

)

Third party 
sequences 

($TB_HOME/ss/lib/
cdn)

Reusable Tightliy coupled

Custom sequences 
($TB_HOME/ss/lib/

seq)

Reusable Tightly coupled
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The structure of MPPSS architecture shown in Figure 2 represents the generic architecture deployed. $TB_HOME 

represents the top verification directory. The testbench and sequences components are split at first abstraction level 

to differentiate the root cause of issue during both debug and plug & play. The testbench represents the static 

component during simulation that includes block configuration, interfaces, monitors etc. The sequence represents 

the programming sequence and other dynamic SV-UVM objects, which affect the simulation progress. The clear 

demarcation between static and dynamic components are enabled to flow flush higher abstraction in static 

environment while lower abstraction makes progress on dynamic environment cleanup. This results in parallel 

progress at different abstraction levels. The components are further segregated as reusable and non-reusable 

components to minimize the plug and play porting efforts 

Reusability of verification components is a vital process that benefits overall cycle of verification especially when 

different aspects of verification is covered at different levels of abstraction. The MPPSS based approach compared 

to a stand-alone and separate verification at SoC and Sub-System is very beneficial in multiple aspects like 

reduction of simulation time, resources, better controllability, coverage collection, early bug detection, license/slot 

time saving and data integrity.  

 

Figure 3. Generic MPPSS development cycle 

The architecture has been successfully tested across high-speed interface IPs like PCIe, USB and Display on the 

ongoing projects. The success of the architecture warranted a wide spread deployment. A through internal audit 

with verification experts have been carried out on MPPSS architecture. The audit team have recommended 

enhancements for better error message display management and request for GLS support. Majority of the reviewer’s 

kick started the deployment of the generic architecture across multiple SoC/Sub System DV teams. 
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