

1

Automated Creation of Reusable Generators for

Analog IC Design with the Intelligent IP Method*

Uwe Eichler, Benjamin Prautsch, Torsten Reich, Fraunhofer IIS/EAS, Dresden, Germany

{forename}.{surname}@eas.iis.fraunhofer.de

Abstract—Procedural generators are often proposed for analog IC design automation. They promise to encapsulate

designer knowledge and intellectual property (IP) data in a deterministic and reusable way. While recent developments

claim to have proven this, one question remains: How to create generators efficiently and integrate them in an

automated design flow? A major challenge for generators is the trade-off between initial implementation effort,

reusability, and acceptance. This raises further questions on the role of the generator supplier: Who should spend the

effort implementing and maintaining generator IP? Which interfaces and standards can be used to implement and

integrate them into common design environments? In order to address these challenges, we propose a combination of

pre-defined generators for basic building blocks at lower hierarchy levels with automatic creation of generators using

place and route templates for more complex circuits. The paper demonstrates the successful application of this flow to

an OTA design and discusses the required implementation efforts, quality of the generated results and potential future

developments.

Keywords—analog; layout; generators; templates; design automation; reuse; soft IP

I. INTRODUCTION

Analog and custom IC design is an increasing bottleneck in SoC (System-on-Chip) development even though

its share in terms of number of transistor devices is rather low [1]. While circuit and layout synthesis based on

hardware description languages and standard cell libraries is state of the art in digital IC design for decades, methods

to automate analog IC design and full-custom layout are not well established.

A main differentiator of analog design automation approaches is the way they translate input requirements to a

layout. There are two basic methodological directions: generators and synthesis. A generator is a programmatic

description of a circuit that, upon execution, creates circuit design data such as schematic and layout in a

deterministic way. Parameters control rather low-level properties such as topology, sizing, placement, and routing.

Generators typically create individual circuit classes and are thus organized in a generator library [3][5][9].

Synthesis tools, in contrast, have a broader focus. They search for a placement and routing solution for a wide range

of circuit classes based on a set of constraints usually derived from the circuit netlist. Often, synthesis algorithms

use optimization also considering electrical performance parameters of the circuit [8]. While generators reduce the

complexity of the solution space by offering a well-selected set of variants to the designer, synthesis handles this

complexity by efficiently searching in the solution space for feasible variants.

As complexity is usually of different nature across different circuit hierarchy levels [2], both automation

approaches are often combined when larger circuits are to be handled [1][10]. Basic analog building blocks can

typically be constructed from unit-size transistors or passive devices and often have matching constraints which

makes their array-style layouts well scalable and easy to implement in a generator. In the next higher hierarchy

level (e.g. analog functional blocks), these array blocks then have to be arranged and routed in an area-efficient and

parasitic-aware way. This also retains some degree of flexibility that is again required for the next higher level. Due

to the large number of possible layout solutions at these higher hierarchies, synthesis approaches tend to be useful

here. Simultaneously, generators can provide the underlying layout engines that are able to create many layout

variants already fulfilling basic constraints such as DRC and LVS. These hierarchical generators can then be

controlled either by designers directly or by an optimizer.

* This work was enabled by the project InnoStar (grant no. 16ME0462), funded by the German

Federal Ministry of Education and Research (BMBF).

2

This paper proposes a hierarchical generator approach based on the Intelligent IP Framework (IIP) [5] that uses

a library of pre-defined base-level generators together with a tool for automatic creation of generators for higher

hierarchy levels. Comparable to schematic-driven layout flows (SDL), input is a schematic representation of the

circuit. The difference is that the newly created generators may then be used solely to generate further variants of

the design including all schematics and layouts.

II. THE INTELLIGENT IP APPROACH

Intelligent IP (IIP) is the name of a software that provides the infrastructure to implement and execute circuit

generators within an custom IC design environment such as Cadence Virtuoso. In IIP, a generator is a program that

creates design data (usually so-called cell views) of a circuit building block in the design database of the design

environment used. IIP generators are focused on a rather deterministic but also parameterizable as well as PDK-

agnostic description and generation of consistent design data (rather than focused on searching solutions in the

design space according to target performances). Although it would be possible to integrate sizing or optimization

algorithms into the generator framework or a specific generator, the current approach intends to provide interfaces

to existing tools in order to enable functionality like layout-aware sizing with generators in the loop. Generic

interfaces to process technology data defined by a PDK (process design kit) and to the design environment allow a

well portable generator implementation. The generator programs are written in Python based on the IIP API

(application programming interface) that also supports complex parameter dependencies and hierarchy (see Figure

3). Together with a built-in library of basic generators, this allows writing comprehensive hierarchical generators

that can create the full hierarchy of a circuit’s design data only based on this program [5][6][7].

The built-in basic generators cover the two lowest hierarchy levels. At device level, there are wrapper generators

for primitive devices of the PDK (MOS transistors, capacitors, resistors, etc.) that map the technology-specific

PCell instances and their parameters to a generic subset of device configurations used in IIP. One level above, there

are generators for very common structures such as capacitor and resistor arrays, matching MOS arrays for current

mirrors and many other topologies, and a differential pair (see Figure 1).

Figure 1: Examples of IIP base-level generators MosArray (left, supports many options for topology, pattern, and routing)

and DiffPair (right, symmetric place pattern and routing).

III. GENERATOR-BASED DESIGN METHODOLOGY

For the automation of design hierarchy levels above basic structures, there are the following generator-based

usage scenarios with different trade-offs between implementation effort and reusability:

 Using generators up to base-level only (left side of Figure 2) already increases sizing and layout productivity

but limits the reuse because place and route of the levels above have to be done manually.

 A custom, circuit-specific generator implementation with low-level description of instances, wires, vias, and

pins would either be less flexible especially regarding layout arrangements or would require large

implementation efforts with less reusable code to produce customizable and area-efficient layouts.

3

 Abstract layout templates [7] that define relative positions of sub-block instances and interconnects in a

regular way might be reused even across hierarchies and thus can significantly reduce the implementation

effort of a generator’s layout part. Their regularity and universality makes them well suited for automatic

creation of generator code that supports a wide range of technologies. Proving the feasibility of such generic

layout styles for circuit performances is one aspect of this work.

Figure 2: Overview of the generator creation flow when using the Intelligent IP approach.

Before this work, the IIP Creator tool (Figure 2, Figure 5 right) was already able to generate code of a new IIP

generator based on an existing schematic and symbol of a circuit block, also for several cells in a design hierarchy

in one step. The new generator got parameters for all the sub-block or device instances found in the schematic and

contained code for re-generating the symbol, the schematic, and a simplified layout view in a technology-

independent and parameterizable way. In the layout part, it created a simple side-by-side arrangement of all the

sub-block layouts without any routing. The original target applications of the IIP Creator were: creating code

templates for generator development, and porting design data between technologies or design environments. While

both still work in many cases, the main drawback was the limited layout support. The generator developer had to

add meaningful algorithms for place and route or, when the generator was used unchanged, the top-level of the

generated layout had to be re-drawn by a layout engineer.

In order to overcome these limitations, we combined the layout template approach with the IIP Creator such

that the initially generated layout code is already able to produce appropriate layouts. In a previous work, we already

investigated chessboard-like templates (which we called MESH [6]) and applied them to array layouts of switches

[6] and capacitances [7]. In both cases, a larger number of unit-size elements were placed which made it easier to

find an area-efficient placement and routing solution. Here, we wanted to support also layouts with fewer but

differently sized sub-blocks such as operational amplifiers. In a MESH floorplan, which is sliceable along all edges

in both directions, the largest block would define the height of a row and the width of a column resulting in unused

area in all other cells with smaller blocks. This could be addressed by either hierarchical templates that can sub-

divide cells of a floorplan into smaller cells or, what we did here, by another, less restrictive template. We chose a

so-called “street” floorplan similar to [4] that places all blocks in up to two rows along a central routing channel

(see Figure 7). It is only sliceable along one axis such that sub-blocks of arbitrary width might be arranged together

in one row and only their heights could be aligned when optimizing for area. The routing was simplified to a single

channel containing parallel wires for all required signals and straight connections to the sub-block pins. To avoid

conflicts when accessing the channel from both rows within short horizontal distance, up to three different layers

are used, and the pins of the sub-blocks are configured accordingly (see Figure 8).

As a result, the user may now read-in a schematic design into the IIP Creator and will receive a generator that

is able to not only re-generate the schematic and sub-block layouts for different parameters or technologies but also

IIP Generator Framework

Layout Symbol

Symbol Schematic

Schematic

Replace basic

structures by

IIP blocks

Generator

Creator

Flexible

Generator

Optional:

manually

adapt code

Generic Tech Interface

Basic

Generators

PDK

Generic DE Interface

Classes for Layout Templates, Design Database

Access, Parameters, GUI, …

Basic

Generators
Basic

Generators

Layout Symbol SchematicLayout Symbol SchematicLayout Symbol Schematic

Flexible

Generator

User

Parameters

Design Environment (DE)

Original Design Generated Design(s)

Layout

4

a top-level layout that can be configured regarding placement of sub-blocks within the street template and several

routing properties. This layout is then correct in terms of DRC and LVS and can be used in subsequent design steps.

When looking at a code example (see Figure 3), it becomes obvious that the templates are also a great help for

generator developers. Behind the few lines for configuration and executing the template within the generator’s

layout method, there are currently several thousand lines of code for placement and routing the developer would

otherwise have to replace by individual code.

this is iiplib.std.Ota1

import iip… # API

import iiplib… # sub-generators

class Generator(iip.gen.HierBlock):

 def param_spec(self): # define parameters, their constraints, and init dependent class members

 # add constrained parameter(s)
 self.params.add("nRows", 2, "number of template rows", RangeConstraint(1, 2))
 …
 # add sub-generator(s), here for DiffPair with initial parameter values
 self.generators.add("dp", iiplib.base.DiffPair, Params(w="1u", l="300n"))
 …
 # add proxy parameter(s), here from sub-generator dp (hierarchical parameter propagation)
 self.params.add_proxy("dp_w", self.generators.dp.params.w)
 …

 def param_check(self): # handle parameter changes and cross-dependencies

 …

 def prepare(self): # common data for all views

 # e.g. describe circuit structure/topology
 self.instnamespecs.add("DP", self.generators.dp, sch="I_DP", lay="I_DP", bus=None)
 …

 def schematic(self, cv): # schematic view description

 i_dp = self.instnamespecs.DP.master.instantiate(cv, pos=Dot(0,0), rot=RotationType.R0, …)
 …

 def layout(self, cv): # layout view description

 # create instances
 i_dp = self.instnamespecs.DP.master.instantiate(cv, …) # instance of a generated block
 master = self.open_cellview("mylib", "mycell", "layout")
 i_2 = cv.create_instance(master, "I2", parameters=[…]) # instance of an existing (p)cell
 …

 # create template
 tpl = iip.placeroute.PlaceTemplateStreet(ncols=(4,4), route_opt=…)

 # assign instances to the template (can also be done by arguments of the template constructor)
 tpl.assign_elem(pos=(0,0), elem=i_dp)
 tpl.assign_elem(pos=(1,0), elem=i_2)
 …

 # draw to layout view
 tpl.draw(cv, …)

 …

Figure 3: Simplified generator code example with template usage in the layout part.

The shown class methods are a selection of the generator API provided by the IIP core.

Another, rather conceptual question of generator development (no matter if it is done manually or by code

generation) is how to handle circuit hierarchies. Basically, hierarchy is a concept for managing complexity by sub-

dividing the design problem into smaller pieces and also for reducing complexity as common sub-blocks may be

reused. The same actually applies to generators: implementation effort is reduced and reusability increased for more

regular and well parameterizable circuits. Thus, a generator developer has to decide which building blocks of a

circuit should be realized by a separate generator depending on the required structural and geometrical flexibility

and potential reuse. For the template approach shown here, this also determines the sub-blocks to be placed in the

template cells.

5

In conventional analog IC design, lower-level blocks such as operational amplifiers are often designed as flat

entities with no further sub-hierarchies although they have functional sub-parts such as differential pairs, biasing,

switches, mirrors, etc. each with more or less different sizing, electrical and thus also geometrical constraints. If the

IIP Creator flow would be applied to such a flat schematic, the template fields would be filled with the instances of

the primitive devices, which would then all be routed through the common channel, and the parameter interface

would contain a long list of all the device parameters. The user of the resulting generator might choose a place

pattern that lets critical devices, such as the two transistors of the differential pair, be placed close to each other.

However, the feasibility of such a flat layout style regarding parasitics and mismatch is not yet proven and will be

subject of further investigations. For now, we recommend using base-level generators for circuits of this complexity

before creating new generators for them using the IIP Creator flow. On the one hand, these basic generators are

already available, and on the other hand, they provide flexible layouts, optimized for area and matching, and a set

of specialized parameters. For a new design, they might be used from the beginning already at schematic level. In

existing flat schematics, basic structures should be replaced by corresponding instances of generated building

blocks (see Figure 2).

IV. RESULTS

We implemented a new layout template following the “street” approach described above as part of the IIP

generator API and integrated it into the IIP Creator. An existing OTA (operational transconductance amplifier)

design in a 28 nm bulk technology was selected as evaluation example. It was part of a set of LDOs (low drop out)

provided by our industry partner [18] and already implemented using the BAG2 [9] generator approach. Figure 4

shows the flat schematic and the generated layout of this source design.

Figure 4: Original OTA design in a 28 nm bulk technology. The layout was generated using the approach in [9][18].

Following the flow depicted in Figure 2, we first identified basic blocks in the original schematic and replaced

them by basic IIP generator blocks (Figure 5, left). These basic building blocks largely match the sub-blocks of the

original layout: differential pair, biasing for n and p parts, output mirror, and cascode. We did not include the

passive devices that were part of the original layout view only. Also, the control switches of the biasing parts were

moved to separate blocks because their devices can be very small and thus don’t need to be part of the biasing

arrays with much larger devices. Using the IIP Creator (Figure 5, right), a new generator for the OTA was created

within seconds based on the revised schematic and symbol views. It initially has parameters for all the sub-blocks

and for the template-based placement (Figure 6, right).

Additionally, we identified four exemplary sizing cases (power, gain, stability, speed) by pre-layout simulations

of the OTA and included them as selectable parameter sets into the generator (Figure 6, left). This step is not

necessary for the new generator to work. It rather demonstrates how the generated code may be further specialized

to provide a convenient way to switch among pre-defined variants without the need to change several sub-block

6

parameters in very detail (which is still possible, too). Figure 7 shows generated layouts of the OTA in these four

sizing variants and each with three different aspect ratios. Generating all views of one variant takes about 30

seconds. The execution time also depends on the performance of the PDK PCells and can differ significantly

between PDKs. Currently, adjusting the aspect ratio requires changing several parameters of the template and the

sub-blocks. This way, the aspect ratio can be changed between about 1.3 and 5.6 over all variants. There is a

maximum difference of about 10 percent in bounding box area among the aspect ratio variants per sizing. Also the

influence of the layout parasitics on the circuit performances was investigated by extracted simulations of all the

variants. So far we found that the 3 dB bandwidth does not degrade more than 15 percent compared to schematic

simulations with a variation of only 3 percent across the generated layout variants of the “speed” sizing. This might

be taken as an indication for a low sensitivity of this circuit type to generic and flexible layout styles.

Figure 5: The same schematic as in Figure 4 with basic building blocks replaced by blocks from the IIP generator library (left) and

the graphical user interface of the IIP Creator that creates executable generator code from existing schematic data (right).

Figure 6: Graphical user interface of the automatically created generator of the OTA with sizing and other common parameters (left) and

placement and template parameters (right). (The preset sizing parameters were added manually after code generation for more convenience.)

7

Figure 7: Generated layout variants of the OTA using the selected "street" template, the columns differ by sizing for the pre-calculated

performance variants low power, high gain, stability, and high speed while the rows differ by their targeted aspect ratio and placement.

Figure 8: Pragmatic routing channel of the “street” template of one of the examples. In order to avoid conflicts, the layers of horizontal and

vertical connections can be ordered such that the horizontal wires use a layer in between the others in the metal stack. This also requires

propagating parameters to the sub-generators to adjust appropriate layers and pin positions of the generated instances.

V. CONCLUSION AND OUTLOOK

The automatic creation of template-based generators may close the gap between generators for basic building

blocks and designer-driven layout reuse and synthesis for more complex circuits. We see large potential benefits of

the IIP Creator approach for both design teams and generator developers. It allows a fast transfer of existing design

IP into a much more generic and reusable format. Libraries of circuit generators might define reference IP and

design guidelines much better than a long list of documents and legacy designs. For the EDA community the code

generation may be a chance to drive a common standard of a generator language.

The demonstrated example also exposes a set of open points that requires further efforts. Template parameters

such as place patterns, aspect ratios, and routing styles must better interact between several generators across

hierarchies such that their effect on top-level regarding area, aspect ratio, or parasitics (especially when it comes to

RF applications) is available early as an estimation before generating the actual layout. This will enable fast layout-

aware sizing and early optimization of area or aspect ratio. Also, further investigation of the feasibility of more

layout styles (i.e. more templates) for several circuit topologies is required – preferably based on standardized

benchmark designs.

ACKNOWLEDGMENT

The authors thank Dr. Husni Habal and his colleagues from Infineon Technologies AG for providing the original

design used in [18] and many fruitful discussions about generator-based design approaches and tools.

 REFERENCES

Academic generator- and synthesis-based approaches

[1] J. Scheible, “Optimized is Not Always Optimal – The Dilemma of Analog Design Automation,“ Proc. of the 2022 Int. Symp. on Physical

Design (ISPD '22), pp. 151-158, 2022, doi: 10.1145/3505170.3511042.

8

[2] J. Scheible und J. Lienig, “Automation of Analog IC Layout – Challenges and Solutions,“ Proc. of Int. Symp. on Physical Design

(ISPD'15), pp. 33-40, 2015.

[3] D. Marolt, “Layout Automation in Analog IC Design with Formalized and Nonformalized Expert Knowledge”, Dissertation. Stuttgart,

2018.

[4] A. Graupner, R. Jancke und R. Wittmann, “Generator Based Approach for Analog Circuit and Layout Design and Optimization,“ Design,

Automation & Test in Europe Conference & Exhibition, DATE 2011, March 2011, doi: 10.1109/DATE.2011.5763267.

[5] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich and J. Lienig, “IIP Framework: A Tool for Reuse-Centric Analog

Circuit Design,” 13th Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD

2016), pp. 1-4, 2016.

[6] B. Prautsch, U. Eichler, T. Reich and J. Lienig, “MESH: Explicit and Flexible Generation of Analog Arrays,” 2017 14th Int. Conf. on

Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 1-4, 2017.

[7] B. Prautsch, R. Wittmann, U. Eichler, U. Hatnik und J. Lienig, “Generators, Templates, and Code Generation for Flexible Automation

of Array-Style Layouts,“ Proc. of the Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit

Design (SMACD 2021), pp. 180-183, July 2021.

[8] N. Lourenço, R. Martins und N. Horta, “Layout-aware Sizing of Analog ICs Using Floorplan & Routing Estimates for Parasitic

Extraction,“ Design, Automation & Test in Europe Conf. & Exhibition (DATE), pp. 1156-1161, 2015.

[9] E. Chang et al., “BAG2: A Process-portable Framework for Generator-based AMS Circuit Design,“ IEEE Custom Integrated Circuits

Conf. (CICC), pp. 1-8, 2018, doi: 10.1109/CICC.2018.8357061.

[10] T. Dhar et al., “ALIGN: A System for Automating Analog Layout,“ IEEE Design & Test, pp. 8-18, April 2021, doi:

10.1109/MDAT.2020.3042177.

[11] B. Xu et al., “MAGICAL: Toward Fully Automated Analog IC Layout Leveraging Human and Machine Intelligence: Invited Paper,”

2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-8, doi:

10.1109/ICCAD45719.2019.8942060.

[12] H. Chen et al., “AutoCRAFT: Layout Automation for Custom Circuits in Advanced FinFET Technologies,” ACM International

Symposium on Physical Design (ISPD), Virtual Event, Canada, Mar. 27-30, 2022.

Commercial EDA Software

[13] Synopsys Custom Compiler, https://www.synopsys.com/implementation-and-signoff/custom-design-platform/custom-compiler.html,

retrieved May 2022

[14] Cadence ModGen, https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html,

retrieved May 2022

[15] Cadence PCell Designer, https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/services/cadence-vcad-pcell-

ds.pdf, retrieved May 2022

[16] Pulsic Animate, https://pulsic.com/animate/, retrieved May 2022

[17] Analog Rails Automatic Place and Route, http://www.analograils.com/, retrieved May 2022

Proprietary company-internal solutions

[18] F. Passerini et al., “ANAGEN: A Methodology for ANAlog Circuit GENeration”, presentation at European Solid-state Devices and

Circuits Conference (ESSCIRC/ESSDERC), 2021.

[19] Agile Analog Composa, https://www.agileanalog.com/technical-information/composa-methodology

[20] Silicon Technologies ADONIS, https://silicontechnologiesinc.com/read-more-adonis-re-imaging-analog-design/

