DESIGN AND VERIFICATION™ **CONFERENCE AND EXHIBITION**

MUNICH, GERMANY DECEMBER 6 - 7, <u>2022</u>

Automated Creation of Reusable Generators for Analog IC Design with the Intelligent IP Method

Uwe Eichler, Benjamin Prautsch, Torsten Reich Fraunhofer IIS/EAS

SPONSORED BY THE

IIS

Agenda

- Motivation
- What is a generator?
- Layout templates
- Automatic creation of generators
- Generator and Simulation Results
- Summary / Outlook / References

Motivation (for analog layout automation)

- Digital IC design:
 - Circuit and layout synthesis based on an HDL description and standard cells is state of art
- Analog IC design:
 - Dominated by manual work, without programmatic entry, soft IP, or layout synthesis
 - Reduced efficiency and design safety
 - Few automation approaches, not well established

Analog IC Design Automation Approaches

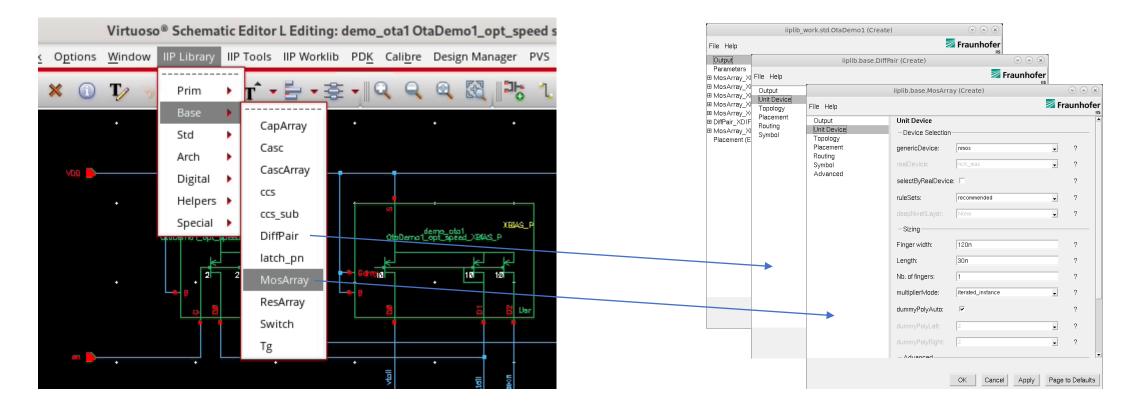
- Synthesis
 - search for feasible / optimal P & R solution in very large parameter space
 - requires definition of many constraints due to complexity
 - \rightarrow handle complexity
- Generators
 - Programmatic circuit description, creates design data
 - Parameters to control topology, sizing, placement, routing
 - Circuit-class-specific, deterministic, can be organized in libraries
 - \rightarrow reduce complexity

Analog IC Design Automation Approaches

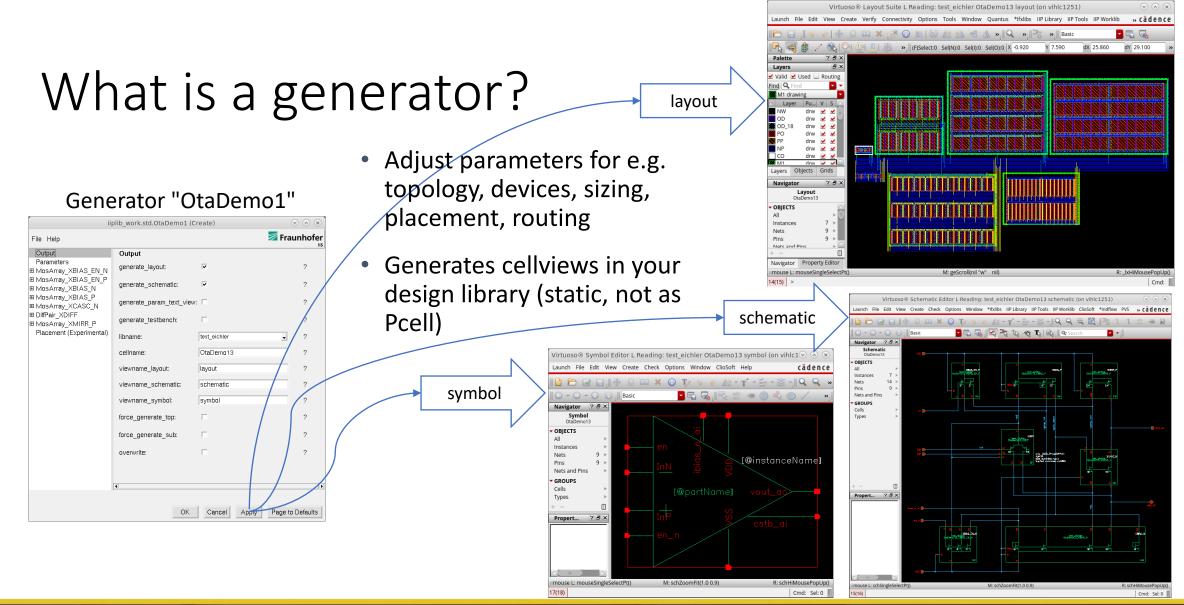
- Generators + Optimization
 - Generators for basic building blocks (array arrangements of unit devices, well scalable layouts, easy to implement as generator)
 - Need to arrange such blocks in hierarchical designs with optimized area and routing
 - \rightarrow use optimization to adjust generator parameters
 - \rightarrow enables layout-aware sizing and optimization

What is a generator?

- "Procedural generators are often proposed for analog IC design automation. They promise to encapsulate designer knowledge and intellectual property (IP) data in a deterministic and reusable way." [this paper]
- Known generator approaches:
 - Cadence PCell / Synopsys PyCell [1, 2]
 - IPGen 1Stone (not available anymore) [3]
 - Fraunhofer IIS/EAS Intelligent IP ("IIP", this publication)
 - Berkeley Analog Generator [4]
 - Some more, mostly academic approaches

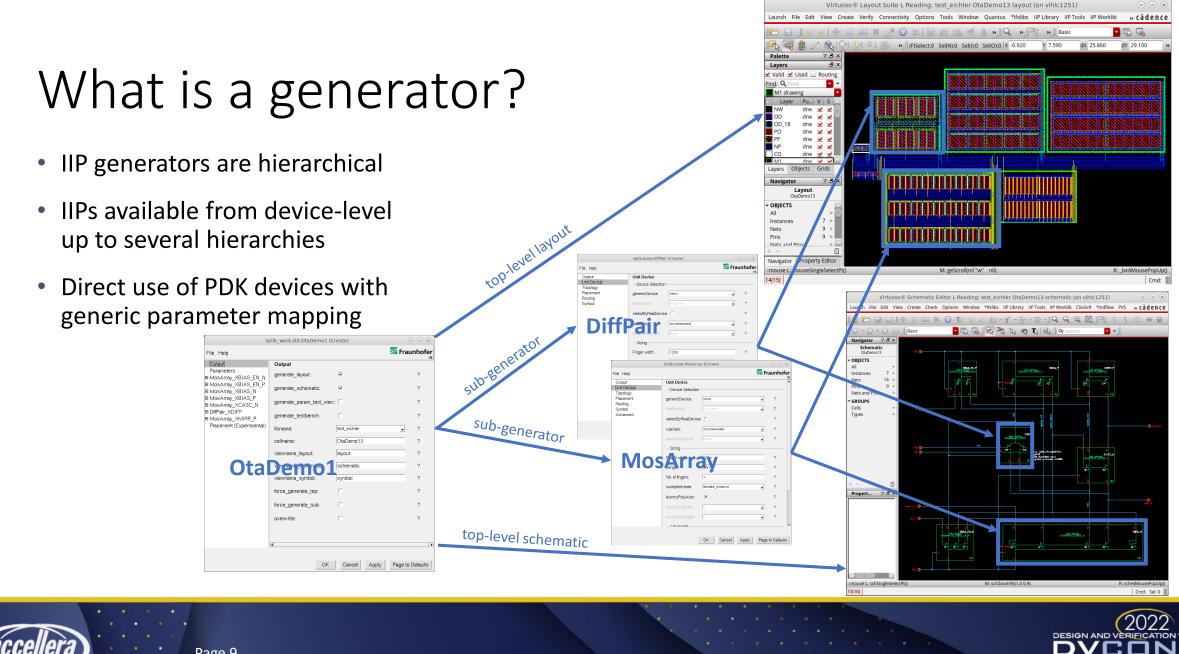


What is a generator?

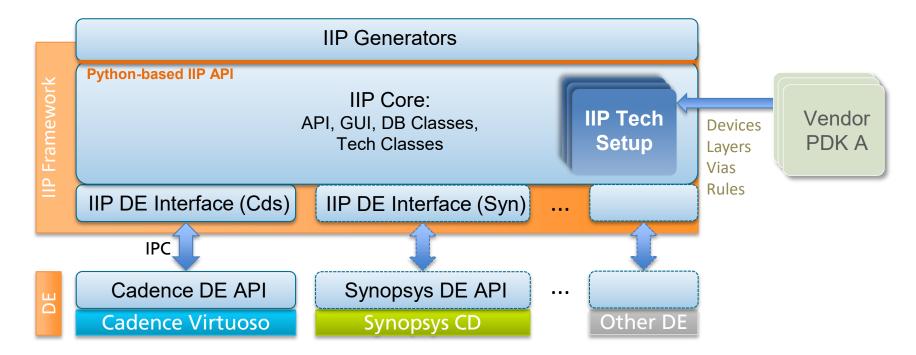

Page 7

SYSTEMS INITIATIVE

- specific for a type of circuits
- also called an IIP (a kind of analog soft IP)
- integrates as a library of IIPs in the design environment



SYSTEMS INITIATIVE



SYSTEMS INITIATIVE

What is a generator?

• implemented using a generic circuit description language based on Python

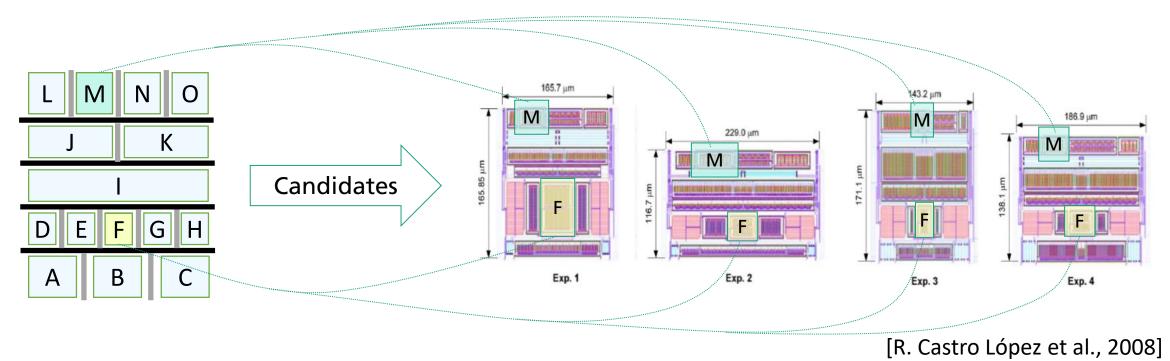
Motivation (for automated generator creation)

- How to create and integrate generators efficiently?
 → Trade-off: implementation effort, reusability and acceptance
- Who should implement and maintain generator IP?
 → Design team / CAD department / IP vendor / EDA vendor?
 → Circuit IP and technology data often confidential
- Which interfaces and standards should be used?
 - → Programming language, Tool and PDK interfaces, Interoperability?

\rightarrow Automate also the generator implementation

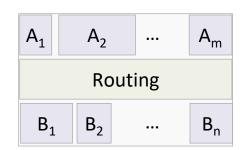
Generator-based design of hierarchical circuits

- Use generators up to base-level only
 - \rightarrow Already improves productivity
 - \rightarrow Limited reuse due to manual effort for upper hierarchies
- Custom, circuit-specific generator implementation
 - \rightarrow Large implementation effort for flexible, area-efficient layout
- Generator using abstract layout templates
 - ightarrow templates define relative positions of sub-block instances and interconnects
 - \rightarrow usually regular arrangements, reusable across hierarchies
 - \rightarrow fast generator implementation as P & R code encapsulated by template API



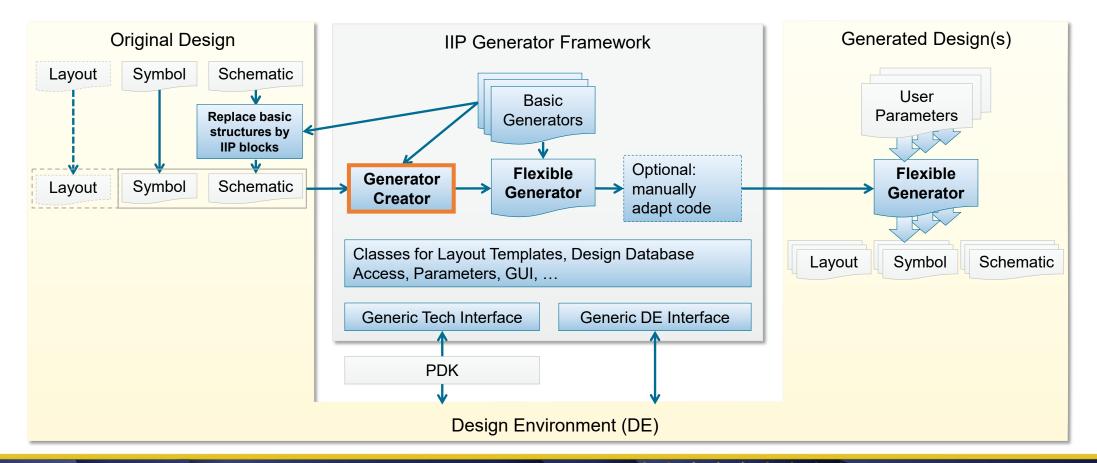
• Page 12

Template-based layout generation

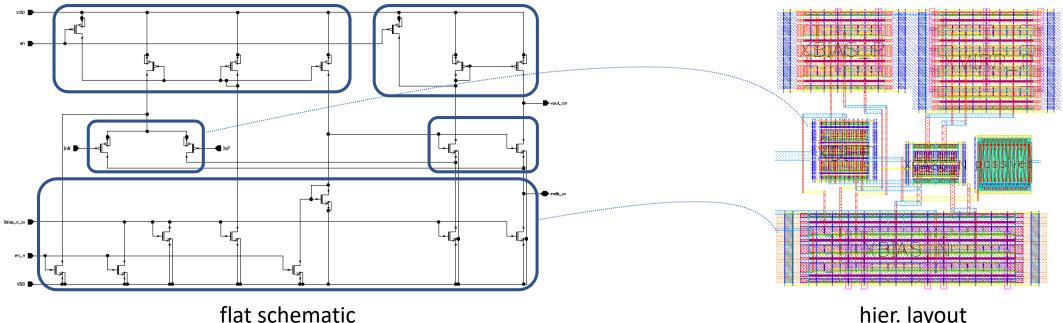

• Not a new approach: [5]

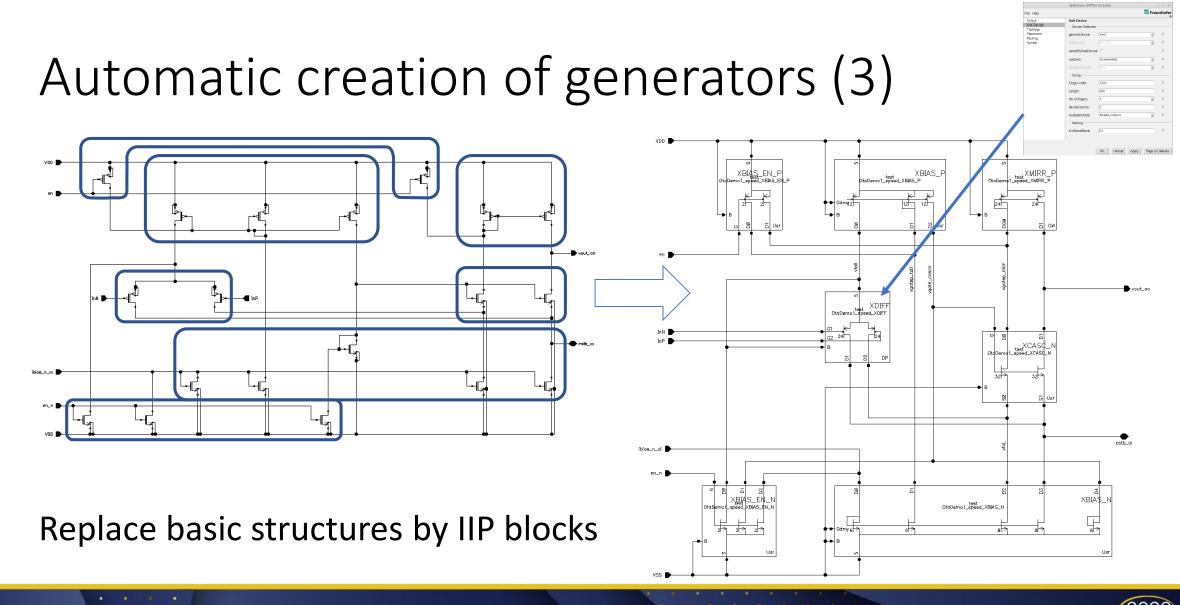
Template-based layout generation

- Template P&R algorithms were embedded into IIP
- Template properties accessible through user interface


Template "Street"

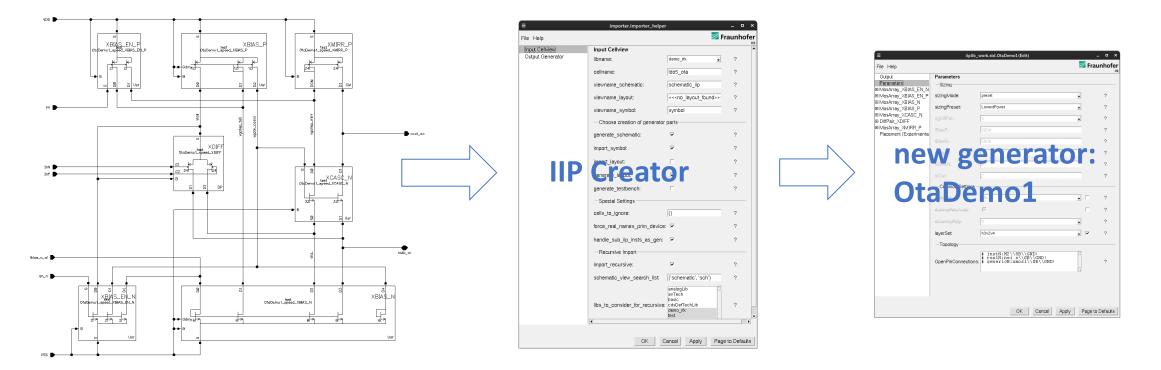
≡ File Help	iiplib_work.std.Ota[Demo1 (Create)	_ □ ×								
Output	Placement (Experimen	ntal)	<u> </u>								
Parameters	placeMethod:	street	• ?		2	6	4	7			
MosArray_XBIA5_EN_P MosArray_XBIA5_EN_P MosArray_XBIA5_N MosArray_XBIA5_P MosArray_XCASC_N DiffPair_XDIFF MosArray_XMIRR_P Placement (Experimental)	nRows:	2	?								
	placeStyle:	p-n	• ?		Routing						
			?								
	initWidth:	10	?		1	3		_			
	initHeight:	10	?					5		3	
	spcHor:	0.1	?								
	spcVer:	0.1	?					·			
Generator GUI				Template			************	•••••	Generated layout		


Automatic creation of generators (1)


Automatic creation of generators (2)

hier. layout (generated by [4])

Orig. OTA design example by Infineon [6]

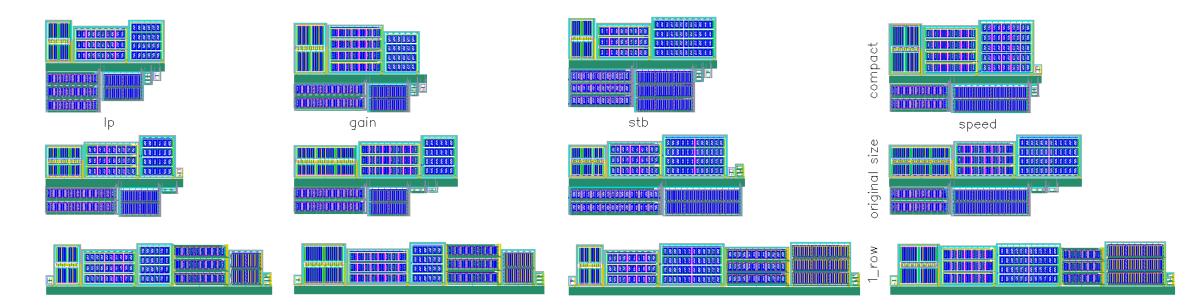


Automatic creation of generators (4)

Use IIP Creator to translate available schematic data into a new generator

Automatic creation of generators (5)

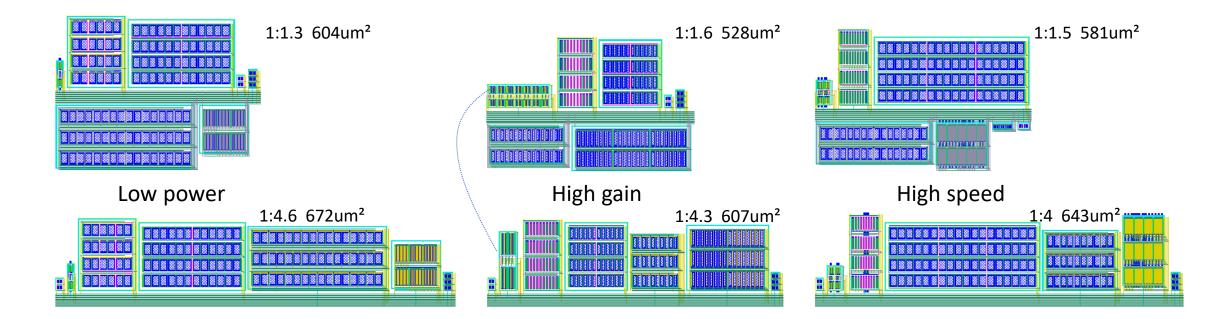
					File Help	Fraunhofer		
E iiplib_wo		_work.std.OtaDemo1 (Edit)	_ □ ×	Auto-generated:	Output Parameters	Placement (Experimental) placeMethod: street		?
Output	Parameters		IIS	J	⊞ MosArray_XBIAS_EN_N ⊞ MosArray_XBIAS_EN_P		2	?
Parameters MosArray_XBIAS_EN_N	-Sizing			 inherited 	⊞ MosArray_XBIAS_N ⊞ MosArray_XBIAS_P	placeStyle:	user 🗸	?
MosArray_XBIAS_EN_P MosArray XBIAS_N	sizingMode:	preset	• ?		⊞ MosArray_XCASC_N ⊞ DiffPair XDIFF		({{\$,4,7,2}},	
MosArray_XBIAS_P MosArray_XCASC_N	sizingPreset:	LowestPower	• ?	parameters from	MosArray_XMIRR_P Placement (Experimental	placePattern:		?
DiffPair_XDIFF	ngDiffPair:	4	• ?	all sub-blocks		initWidth:	10	?
■ MosArray_XMIRR_P Placement (Experimenta		900n	?			initHeight:	10	?
	IBiasN:	500n	?	A Tamplata DQD		spcHor:	0.1	?
		3		 Template P&R 		spcVer:	0.1	?
	mBiasN:	6	?	parameters		include_routing	j: 🗖	?
	mOut:	2	?			routeWidth:	0.05	?
	- Common Settings					routeSpc:	0.07	?
	ruleSets:	dfm	•			wire_names:	('ibias_n_ai', 'vgate_cascn', 'VSS', 'en_n', 'vtail', 'vgatep_mirr'	?
	dummyPoly∆uto:		?			exclude_layers	x 🗖	?
	nDummyPoly:		 ✓ ✓ ? 	Manually added		-Pattern-to-instance map-		
	layerSet:	h3v2v4				placeDevices:	((1, 'XBIAS_EN_N'), (2, 'XBIAS_EN_P'), (3, 'XBIAS_N'), (4, 'X	?
	—Topology———	# instN:M2\\SB\\GND!		(optional):			((XDIFF, XBIAS P, XMIRR P, XBIAS EN P) XDIAS N, XCASC N, XBIAS EN N	2
	OpenPinConnection	<pre># instN:M2\\SB\\GND! # realN:nei a\\SB\\GND! s: # genericN:nmosi\\SB\\GND!</pre>	?					
				Predefined	4			
					OK Cancel Apply Page to Defaults			
				parameter sets				
		OK Cancel Apply	Page to Defaults	for usability				


iiplib_work.std.OtaDemo1 (Edit

_ ¤ ×

Generated layouts

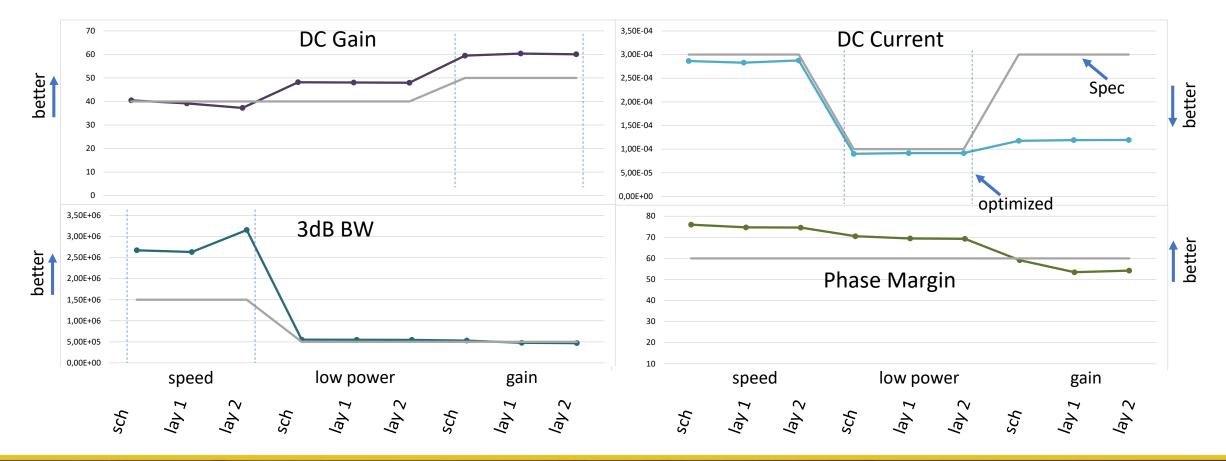
• Original paper: 4 sizing variants, 3 layout variants



Generated layouts

• New: updated testbench, 3 sizing variants, 2 layout variants

Selected performance results


- Generator runtime: ≈ 30 sec (dep. on PDK)
- DRC, LVS clean
- Aspect ratio: 1:1.3 .. 1:4.6, influence on bbox area: max. 15 %
- max. parasitic influence across all 6 layout variants:
 - 3dB BW: -11 .. +18 %
 - DC gain: -8 .. +2 %
 - DC current: -1 .. +2 %
 - Phase Margin: -10%

Selected performance results

Page 23

SYSTEMS INITIATIVE

Summary

- Template-based layouts are feasible for this (and more) types of circuits
- automatic creation of template-based generators may close the gap between generators for basic building blocks and designer-driven layout reuse and synthesis for more complex circuits
- IIP Creator approach allows fast transfer of existing design IP into a much more generic and reusable format

Outlook

- Parameter abstraction for aspect ratio, place pattern, routing, sizing

 → early investigation of layout effects, even before simulation
 → layout-aware sizing/optimization
- Better integration into simulation / optimization tool flows
 - In progress: [7] [8]
 - Parameter interfaces to Cadence ADE, MunEDA WiCkeD, Intento ID-Xplore, ...
- Standardization of a common generator description language
 → interoperability across generator suppliers
- further development driven by public funded projects: AnastASICA, InnoStar, HoLoDEC

References

Thanks to Husni Habal et al. from Infineon Technologies for providing the original design and many discussions!

This work was funded by the German Federal Ministry of Education and Research BMBF within project InnoStar.

[1] Cadence PCell Designer: https://www.cadence.com

[2] Synopsys PyCell Studio: https://www.synopsys.com

[3] IPGen 1Stone: A. Graupner, R. Jancke und R. Wittmann, "Generator Based Approach for Analog Circuit and Layout Design and Optimization," DATE 2011

[4] Berkeley Analog Generator: E. Chang et al., "BAG2: A Process-portable Framework for Generator-based AMS Circuit Design," CICC 2018

[5] R. Castro-López et al., "An Integrated Layout-Synthesis Approach for Analog ICs," IEEE TCAD, 2008

[6] F. Passerini et al., "ANAGEN: A Methodology for ANAlog Circuit GENeration", ESSCIRC/ESSDERC, 2021

[7] B. Prautsch, R. Iskander et al., "Automatic Generation of Multiple GF-22FDX OpAmp Variants and Layouts in the Virtuoso[®] Suite by Incorporating ID-Xplore[™] of Intento Design with IIP of Fraunhofer IIS/EAS", CadenceLIVE, 2022

[8] B. Prautsch et al., "A Multi-level Analog IC Design Flow for Fast Performance Estimation Using Template-based Layout Generators and Structural Models," SMACD 2022

Thank you

Questions?

