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Motivation (for analog layout automation)

• Digital IC design:
• Circuit and layout synthesis based on an HDL description and standard cells is 

state of art

• Analog IC design:
• Dominated by manual work, without 

programmatic entry, soft IP, or layout synthesis
• Reduced efficiency and design safety
• Few automation approaches, not well established
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Analog IC Design Automation Approaches

• Synthesis
• search for feasible / optimal P & R solution in very large parameter space
• requires definition of many constraints due to complexity
 handle complexity

• Generators
• Programmatic circuit description, creates design data
• Parameters to control topology, sizing, placement, routing
• Circuit-class-specific, deterministic, can be organized in libraries
 reduce complexity
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Analog IC Design Automation Approaches

• Generators + Optimization
• Generators for basic building blocks (array arrangements of unit devices, well 

scalable layouts, easy to implement as generator)
• Need to arrange such blocks in hierarchical designs with optimized area and 

routing
 use optimization to adjust generator parameters
 enables layout-aware sizing and optimization
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What is a generator?

• "Procedural generators are often proposed for analog IC design 
automation. They promise to encapsulate designer knowledge and 
intellectual property (IP) data in a deterministic and reusable way." [this paper]

• Known generator approaches:
• Cadence PCell / Synopsys PyCell [1, 2]

• IPGen 1Stone (not available anymore) [3]

• Fraunhofer IIS/EAS Intelligent IP ("IIP", this publication)
• Berkeley Analog Generator [4]

• Some more, mostly academic approaches
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What is a generator?
• specific for a type of circuits
• also called an IIP (a kind of analog soft IP)
• integrates as a library of IIPs in the design environment
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What is a generator?

Generator "OtaDemo1"

layout

schematic

symbol

• Adjust parameters for e.g. 
topology, devices, sizing, 
placement, routing

• Generates cellviews in your 
design library (static, not as 
Pcell)
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What is a generator?

DiffPair

MosArrayOtaDemo1

• IIP generators are hierarchical

• IIPs available from device-level 
up to several hierarchies

• Direct use of PDK devices with 
generic parameter mapping
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What is a generator?

• implemented using a generic circuit description language based on Python
IIP
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Motivation (for automated generator creation)

• How to create and integrate generators efficiently? 
 Trade-off: implementation effort, reusability and acceptance

• Who should implement and maintain generator IP?
 Design team / CAD department / IP vendor / EDA vendor?
 Circuit IP and technology data often confidential

• Which interfaces and standards should be used?
 Programming language, Tool and PDK interfaces, Interoperability?

 Automate also the generator implementation
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Generator-based design of hierarchical circuits

• Use generators up to base-level only 
 Already improves productivity
 Limited reuse due to manual effort for upper hierarchies

• Custom, circuit-specific generator implementation
 Large implementation effort for flexible, area-efficient layout

• Generator using abstract layout templates
 templates define relative positions of sub-block instances and interconnects
 usually regular arrangements, reusable across hierarchies
 fast generator implementation as P & R code encapsulated by template API
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Template-based layout generation

• Not a new approach: [5]
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Template-based layout generation

• Template P&R algorithms were embedded into IIP
• Template properties accessible through user interface 

Generator GUI Template Generated layout
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…
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Automatic creation of generators (1)
IIP Generator Framework
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Automatic creation of generators (2)

Orig. OTA design example by Infineon [6]

flat schematic hier. layout 
(generated by [4])
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Automatic creation of generators (3)

Replace basic structures by IIP blocks
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Automatic creation of generators (4)

Use IIP Creator to translate available schematic data into a new generator

IIP Creator new generator:
OtaDemo1
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Automatic creation of generators (5)
Auto-generated:
• inherited 

parameters from 
all sub-blocks

• Template P&R 
parameters 

Manually added 
(optional):
• Predefined 

parameter sets 
for usability
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Generated layouts

• Original paper: 4 sizing variants, 3 layout variants
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Generated layouts

• New: updated testbench, 3 sizing variants, 2 layout variants

Low power High gain High speed

1:1.3  604um²

1:4.6  672um²

1:1.6  528um²

1:4.3  607um²

1:1.5  581um²

1:4  643um²
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Selected performance results

• Generator runtime: ≈ 30 sec (dep. on PDK)
• DRC, LVS clean
• Aspect ratio: 1:1.3 .. 1:4.6, influence on bbox area: max. 15 %
• max. parasitic influence across all 6 layout variants:

• 3dB BW:  -11 .. +18 %
• DC gain: -8 .. +2 %
• DC current: -1 .. +2 %
• Phase Margin: -10%
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Selected performance results
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Summary

• Template-based layouts are feasible for this (and more) types of 
circuits

• automatic creation of template-based generators may close the gap 
between generators for basic building blocks and designer-driven 
layout reuse and synthesis for more complex circuits 

• IIP Creator approach allows fast transfer of existing design IP into a 
much more generic and reusable format
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Outlook

• Parameter abstraction for aspect ratio, place pattern, routing, sizing 
 early investigation of layout effects, even before simulation
 layout-aware sizing/optimization

• Better integration into simulation / optimization tool flows
• In progress: [7] [8]
• Parameter interfaces to Cadence ADE, MunEDA WiCkeD, Intento ID-Xplore, …

• Standardization of a common generator description language
 interoperability across generator suppliers

• further development driven by public funded projects: AnastASICA, 
InnoStar, HoLoDEC
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Thank you

Questions?
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