
Page 1

Automated Creation of Reusable Generators for
Analog IC Design with the Intelligent IP Method

Uwe Eichler, Benjamin Prautsch, Torsten Reich
Fraunhofer IIS/EAS

Page 2

Agenda

• Motivation
• What is a generator?
• Layout templates
• Automatic creation of generators
• Generator and Simulation Results
• Summary / Outlook / References

Page 3

Motivation (for analog layout automation)

• Digital IC design:
• Circuit and layout synthesis based on an HDL description and standard cells is

state of art

• Analog IC design:
• Dominated by manual work, without

programmatic entry, soft IP, or layout synthesis
• Reduced efficiency and design safety
• Few automation approaches, not well established

Page 4

Analog IC Design Automation Approaches

• Synthesis
• search for feasible / optimal P & R solution in very large parameter space
• requires definition of many constraints due to complexity
 handle complexity

• Generators
• Programmatic circuit description, creates design data
• Parameters to control topology, sizing, placement, routing
• Circuit-class-specific, deterministic, can be organized in libraries
 reduce complexity

Page 5

Analog IC Design Automation Approaches

• Generators + Optimization
• Generators for basic building blocks (array arrangements of unit devices, well

scalable layouts, easy to implement as generator)
• Need to arrange such blocks in hierarchical designs with optimized area and

routing
 use optimization to adjust generator parameters
 enables layout-aware sizing and optimization

Page 6

What is a generator?

• "Procedural generators are often proposed for analog IC design
automation. They promise to encapsulate designer knowledge and
intellectual property (IP) data in a deterministic and reusable way." [this paper]

• Known generator approaches:
• Cadence PCell / Synopsys PyCell [1, 2]

• IPGen 1Stone (not available anymore) [3]

• Fraunhofer IIS/EAS Intelligent IP ("IIP", this publication)
• Berkeley Analog Generator [4]

• Some more, mostly academic approaches

Page 7

What is a generator?
• specific for a type of circuits
• also called an IIP (a kind of analog soft IP)
• integrates as a library of IIPs in the design environment

Page 8

What is a generator?

Generator "OtaDemo1"

layout

schematic

symbol

• Adjust parameters for e.g.
topology, devices, sizing,
placement, routing

• Generates cellviews in your
design library (static, not as
Pcell)

Page 9

What is a generator?

DiffPair

MosArrayOtaDemo1

• IIP generators are hierarchical

• IIPs available from device-level
up to several hierarchies

• Direct use of PDK devices with
generic parameter mapping

Page 10

What is a generator?

• implemented using a generic circuit description language based on Python
IIP

 F
ra

m
ew

or
k

IIP DE Interface (Cds)

IIP Core:
API, GUI, DB Classes,

Tech Classes

IIP Generators

Synopsys CDCadence Virtuoso

Python-based IIP API

IIP DE Interface (Syn)

Cadence DE API Synopsys DE API
Other DE

IIP Tech
Setup

Devices
Layers
Vias
Rules

Vendor
PDK A

DE

...

...
IPC

Page 11

Motivation (for automated generator creation)

• How to create and integrate generators efficiently?
 Trade-off: implementation effort, reusability and acceptance

• Who should implement and maintain generator IP?
 Design team / CAD department / IP vendor / EDA vendor?
 Circuit IP and technology data often confidential

• Which interfaces and standards should be used?
 Programming language, Tool and PDK interfaces, Interoperability?

 Automate also the generator implementation

Page 12

Generator-based design of hierarchical circuits

• Use generators up to base-level only
 Already improves productivity
 Limited reuse due to manual effort for upper hierarchies

• Custom, circuit-specific generator implementation
 Large implementation effort for flexible, area-efficient layout

• Generator using abstract layout templates
 templates define relative positions of sub-block instances and interconnects
 usually regular arrangements, reusable across hierarchies
 fast generator implementation as P & R code encapsulated by template API

Page 13

Template-based layout generation

• Not a new approach: [5]

Candidates

L M N O

J K

I

D E F G H

A B C

M

M

M
M

M

F
F

F F F

[R. Castro López et al., 2008]

Page 14

Template-based layout generation

• Template P&R algorithms were embedded into IIP
• Template properties accessible through user interface

Generator GUI Template Generated layout

2 76

Routing

1 53

4 44

3 3

A1 AmA2

Routing

B1 BnB2 …

…

Template „Street“

Page 15

Automatic creation of generators (1)
IIP Generator Framework

Layout Symbol

Symbol Schematic

Schematic

Replace basic
structures by

IIP blocks

Generator
Creator

Flexible
Generator

Optional:
manually
adapt code

Generic Tech Interface

Basic
Generators

PDK

Generic DE Interface

Classes for Layout Templates, Design Database
Access, Parameters, GUI, …

Basic
Generators

Basic
Generators

Layout Symbol SchematicLayout Symbol SchematicLayout Symbol Schematic

Flexible
Generator

User
Parameters

Design Environment (DE)

Original Design Generated Design(s)

Layout

Page 16

Automatic creation of generators (2)

Orig. OTA design example by Infineon [6]

flat schematic hier. layout
(generated by [4])

Page 17

Automatic creation of generators (3)

Replace basic structures by IIP blocks

Page 18

Automatic creation of generators (4)

Use IIP Creator to translate available schematic data into a new generator

IIP Creator new generator:
OtaDemo1

Page 19

Automatic creation of generators (5)
Auto-generated:
• inherited

parameters from
all sub-blocks

• Template P&R
parameters

Manually added
(optional):
• Predefined

parameter sets
for usability

Page 20

Generated layouts

• Original paper: 4 sizing variants, 3 layout variants

Page 21

Generated layouts

• New: updated testbench, 3 sizing variants, 2 layout variants

Low power High gain High speed

1:1.3 604um²

1:4.6 672um²

1:1.6 528um²

1:4.3 607um²

1:1.5 581um²

1:4 643um²

Page 22

Selected performance results

• Generator runtime: ≈ 30 sec (dep. on PDK)
• DRC, LVS clean
• Aspect ratio: 1:1.3 .. 1:4.6, influence on bbox area: max. 15 %
• max. parasitic influence across all 6 layout variants:

• 3dB BW: -11 .. +18 %
• DC gain: -8 .. +2 %
• DC current: -1 .. +2 %
• Phase Margin: -10%

Page 23

Selected performance results

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

3,00E-04

3,50E-04

DC_Current DC_Current_spec

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

DC_Gain DC_Gain_spec

0,00E+00

5,00E+05

1,00E+06

1,50E+06

2,00E+06

2,50E+06

3,00E+06

3,50E+06

DC Gain DC Current

speed

Phase Margin

Spec

optimized

low power gain

3dB BW

be
tt

er
be

tt
er

be
tt

er
be

tt
er

speed low power gain

Page 24

Summary

• Template-based layouts are feasible for this (and more) types of
circuits

• automatic creation of template-based generators may close the gap
between generators for basic building blocks and designer-driven
layout reuse and synthesis for more complex circuits

• IIP Creator approach allows fast transfer of existing design IP into a
much more generic and reusable format

Page 25

Outlook

• Parameter abstraction for aspect ratio, place pattern, routing, sizing
 early investigation of layout effects, even before simulation
 layout-aware sizing/optimization

• Better integration into simulation / optimization tool flows
• In progress: [7] [8]
• Parameter interfaces to Cadence ADE, MunEDA WiCkeD, Intento ID-Xplore, …

• Standardization of a common generator description language
 interoperability across generator suppliers

• further development driven by public funded projects: AnastASICA,
InnoStar, HoLoDEC

Page 26

References
Thanks to Husni Habal et al. from Infineon Technologies for providing the original design and many discussions!

This work was funded by the German Federal Ministry of Education and Research BMBF within project InnoStar.

[1] Cadence PCell Designer: https://www.cadence.com

[2] Synopsys PyCell Studio: https://www.synopsys.com

[3] IPGen 1Stone: A. Graupner, R. Jancke und R. Wittmann, “Generator Based Approach for Analog Circuit and
Layout Design and Optimization,“ DATE 2011

[4] Berkeley Analog Generator: E. Chang et al., “BAG2: A Process-portable Framework for Generator-based AMS
Circuit Design,“ CICC 2018

[5] R. Castro-López et al., "An Integrated Layout-Synthesis Approach for Analog ICs," IEEE TCAD, 2008

[6] F. Passerini et al., “ANAGEN: A Methodology for ANAlog Circuit GENeration”, ESSCIRC/ESSDERC, 2021

[7] B. Prautsch, R. Iskander et al., "Automatic Generation of Multiple GF-22FDX OpAmp Variants and Layouts in the
Virtuoso® Suite by Incorporating ID-Xplore™ of Intento Design with IIP of Fraunhofer IIS/EAS", CadenceLIVE, 2022

[8] B. Prautsch et al., "A Multi-level Analog IC Design Flow for Fast Performance Estimation Using Template-based
Layout Generators and Structural Models," SMACD 2022

Page 27

Thank you

Questions?

	Automated Creation of Reusable Generators for Analog IC Design with the Intelligent IP Method
	Agenda
	Motivation (for analog layout automation)
	Analog IC Design Automation Approaches
	Analog IC Design Automation Approaches
	What is a generator?
	What is a generator?
	What is a generator?
	What is a generator?
	What is a generator?
	Motivation (for automated generator creation)
	Generator-based design of hierarchical circuits
	Template-based layout generation
	Template-based layout generation
	Automatic creation of generators (1)
	Automatic creation of generators (2)
	Automatic creation of generators (3)
	Automatic creation of generators (4)
	Automatic creation of generators (5)
	Generated layouts
	Generated layouts
	Selected performance results
	Selected performance results
	Summary
	Outlook
	References
	Thank you

