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Abstract— The proposed work aims to develop a Core-Monitor for Hardware-Software co-debugging targeting 

emulation platforms. Core-Monitor is required to have a general hardware and software co-debugging environment 

for an embedded processor. It generates a trace file that monitors the runtime behavior of the CPU. A processor trace 

file would record the events in the CPU and render the core instructions in a human-readable form while it requires a 

post-processing tool for a meaningful interpretation of the data in these trace files. The trace file contents typically 

include the program counters, instructions, memory read/write operations, register access data, and their executed 

time. These trace files are provided as input to tools like Indago for post-processing and debugging. 
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I.  INTRODUCTION 

Debugging and verification are two of the most significant challenges in modern System-on-Chip (SoC) design. 

Current SoCs are composed of numerous processing engines, various peripherals, and hierarchical network-on-chip 

architectures. Therefore, debugging techniques are indispensable to developing and operating multicore SoCs. 

Debugging is unpredictable and varies significantly from project to project; hence co-debugging of hardware and 

software substantially contributes to time to market delays for new products. In order to ensure productivity and 

keep up with the increasing complexity of hardware and software co-design, it is essential to develop new 

techniques and methodologies for hardware and software co-debugging. 

Intending to reduce the HW/SW co-debugging time, there is now a race to process data faster using less power, 

which probes further challenges. The developers need to trace interactions across multiple and often heterogeneous 

processing elements that have to function independently of each other. However, some prominent processor 

providers developed their own tracing capabilities; for instance, ARM provides a tarmac trace feature [1] a standard 

for ARM cores.  

 When multiple cores are put together in a system, there is no reusable solution to trace the processor state of 

these cores. For processors like OpenRISC, RISCV, and others, the favored method for generating the trace file is 

to build a module for each processor, generally written in Verilog or SystemVerilog, which contains several lines 

of code that are needed to trace the processor state. This method is feasible for small SoC designs with one or two 

processors. Embedded processors are developed as multicore implementations. It means that we have to build up 

many modules for every processor, which leads to redundancy as each module contains the same lines of code to 

trace the processor state and hence is effort and time-consuming. 

 Emulation is now a critical component of advanced chip design verification and is evolving to meet future 

demands for increasingly dense, complex, and heterogeneous architectures. Emulation is a process that converts a 

design into an implementation capable of being executed on a specialized hardware [2]. With the increasing 

complexity of designs, simulation is no longer a desirable approach for HW/SW co-debugging. Larger designs have 

moved towards emulation-based HW/SW co-debugging techniques. However, due to the complexity of the 

emulator architecture, implementing HW/SW co-debugging techniques in the emulation platform is more critical 

than in the simulation. Emulators impose various tradeoffs on cost, performance, and turnaround time. As a result, 

transitioning from simulators to emulators for a design can be quite challenging. There is no reusable platform that 

can be used in both the simulation and emulation environments for HW/SW co-debugging. 
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 The Core-Monitor aims to solve this problem by being a standard for trace file generation in simulation and 

emulation environments, which reduces the effort to create the processor state tracer, reduces the HW/SW co-

debugging time, and shortens the time to market. 

 The rest of the paper is structured as follows: Section II gives a brief overview of the related work and 

background in hardware software co-debugging techniques. Section III discusses the architecture of the Core-

Monitor setup and proposes a methodology used for the implementation of the Core-Monitor. Section IV illustrates 

the Core-Monitor setup in the emulation environment with the help of a use case. Then it discusses the evaluation 

metrics considered and provides a summary of the relevant results obtained in this work. Finally, Section V provides 

a conclusion of this paper along with an outlook for future work. 

II. BACKGROUND AND RELATED WORK 

A. Related Work 

While there are many debug, simulation, emulation, and verification tools available, none are acclaimed as the 

best since each offers more convenient features in certain circumstances. As a result, the engineer must manage 

some of these tools and select the appropriate one depending on the stage of the project or the nature of the failure. 

ARM CoreSightTM [3] is an ARM-developed on-chip component that enables multicore cross triggering by 

allowing a core to reach a breakpoint and disable the other cores. Using ARM CoreSight, [4] presents a hardware 

architecture for monitoring memory operations and combining data transfer addresses and data transfer values in 

real-time. ARM CoreSight technology creates a unique debug trace stream standard for memory monitoring 

without interfering with the regular operation of the system. ARM developed the tarmac trace utility [5] for ARM 

products such as Fast Models and Cycle Models, as well as direct simulations of CPUs from its RTL to run in a 

mode that generates a detailed trace of a program's execution. These traces are typically written to a text file in 

the tarmac format. tarmac is a textual format that logs the instructions and their effects executed by a CPU. It 

maintains a list of every value written to a register, every value read and written from memory, and other events 

like interrupts and exceptions. However, this methodology is unique to ARM cores and cannot be reused. 

 

Table 1: Summary of Related Work; f - fully implemented; p - partially implemented 

Related 

Work 

Summary Multi-

Core 

Trace 

file 

Re- 

usable 

[6] Proposes an assertion-based debugging to deal with 

HW/SW concurrency issues at the system level using 

virtual platforms 

f   

[7], [8] An open-source tool is proposed that makes use of GNU 

debugger (GDB) instance to a full-system simulation of an 

embedded FPGA system in ModelSim 

p p  

[9] Proposes a concept of a multi-level re-targetable debugger 

for ASIPs 

p p p 

[10], [11] Approach for multicore HW/SW co-debugging in multiple 

instruction multiple data (MIMD) type design using ARM 

CoreSight. 

f f  

[12] ARM Coresight-based real-time hardware tracing 

solutions are proposed in this work. 

p f  

 

The above Table 1 summarizes the state-of-the-art research in Hardware-Software co-debugging. The column 

Multi-Core means that the proposed technique supports processors with multiple cores. The column Trace file is 

to indicate if the proposed technique generates the trace file for HW/SW co-debugging, and the column Re-usable 

demonstrates that the proposed methodology is re-usable for various processors. As illustrated in the table, while 

the proposed techniques support multicore approaches, little research has been conducted on their reusability for 

SoCs with multiple cores. There is currently no reusable platform for emulation and simulation environments, 

which is addressed in this work. 
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B. Simulation vs Emulation 

HDL simulators are prevalent as the primary tool for design verification in the electronic engineering 

community. They are highly adaptable to debugging a hardware design since they are simple to use and quick to 

set up and compile a design. They may be able to accommodate numerous design iterations each day, provided that 

the design size is suitable. They get challenging for tens of millions of gate counts, typical for today’s system-level 

design verification. Since the modern SoCs have grown more extensive and complex in terms of gate counts and 

supported features, speed of the simulators have become a primary bottle neck. This leads to alarming consequences 

about the completeness of verification by limiting the number of simulation tests to meet the demands of the market 

[13]. 

Table 2: Comparison of Simulation versus Emulation Based on Performance, Design Capacity, and Setup/Compile Time 

 Simulator Emulator 

Performance in kHz in MHz 

Design Capacity upto few million gates upto billion gates 

Setup and Compile time minutes to days days to weeks 

  

 On the other hand, hardware emulation can detect practically all design flaws, whether in the hardware or 

embedded software of the SoC. They can handle large design sizes but need considerable setup time and are slow 

to compile compared to the simulator. Simulators can compile a design in a few minutes while the emulators take 

hours to complete the compilation task. Table 2 indicates the threshold of performance, design capacity and the 

time taken to setup and compile a design in simulators and emulators. It illustrates how the emulator compromises 

with setup and compilation time while increasing performance and capacity. The performance of the HDL 

simulators can go up to few kHz and they drop significantly as the design capacity exceeds few million gates. Since 

emulators are running on actual clock speed and each of its hardware components are running at mega-hertz speed, 

throughput of a design becomes really high and this reduces the overall verification cycle [14]. As a result, more 

complex design projects have migrated to the emulation platform for verification and debugging. 

C. ZeBu and Direct Programming Interface (DPI) 

The Synopsys emulator ZeBu is the emulator used in this work. Synopsys ZeBu [15] is an extremely high-

capacity emulation system designed to facilitate SoC verification requirements for automotive, 5G, networking, 

artificial intelligence, and more. ZeBu supports DPI imported SystemVerilog function calls within the DUT [16]. 

The SystemVerilog Direct Programming Interface (DPI) is an interface between SystemVerilog and other 

programming languages. It enables the designer to easily invoke C functions from SystemVerilog and export 

SystemVerilog functions for use in C. Unlike transactor calls, the ZeBu hardware-software infrastructure that 

supports these calls allows communication exclusively from hardware to software (ZeBu to Host) to enhance 

runtime efficiency. Hence, this work uses the DPI interface and serves as a transactor for the CPU state tracer in 

the BFM. 

III. METHODOLOGY AND IMPLEMENTATION 

 This work aims to develop a Core-Monitor for Hardware-Software co-debugging targeting emulation platforms. 

Core-Monitor is required to have a general hardware and software co-debugging environment for an embedded 

processor. It generates a trace file that monitors the runtime behavior of the CPU. A processor trace file would 

record the events in the CPU and render the core instructions in a human-readable form while it requires a post-

processing tool for a meaningful interpretation of the data in these trace files. The trace file contents typically 

include the program counters, instructions, memory read/write operations, register access data, and their executed 

time. These trace files are provided as input to tools like Indago [2] for post-processing and debugging. 
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A. Architecture and Methodology 

The architecture of the Core-Monitor is depicted in Fig 1. It comprises of processor adapter modules that are 

CPU-dependent; iVC (interface Verification Component) interface, BFM (Bus Functional Module) module and 

the DPI block that are considered as CPU-independent. CPU-dependent means that the functionality is specific to 

the processor in consideration and is color-coded in red whereas CPU-independent means that the functionality is 

generic to all the processors that use the Core-Monitor and is color-coded in green. The methodology proposed in 

this work consists of a CPU dependent adapter to perform the initial processing of received processor signals from 

processor hardware implementation. The adapter is specific to the processor and is the only module that has to be 

updated by the user for different processors. The adapter is connected to the rest of the Core-Monitor components 

that are CPU-independent. These include an iVC interface and iVC BFM for the timed hardware synthesis, a DPI-

C component that provides essential processor tracing functions, and the state-of-the-art verification and 

acceleration technology, SystemVerilog UVM for the untimed verification domain. This UVM testbench 

framework remains as a black box throughout the work. 

 

Fig 1: Architecture of Core-Monitor 

 

 

B. Implementation  

The testbench is partitioned into two tops, hdl_top and hvl_top which helps to enable the testbench to be run 

in the co-emulation setup [17]. The synthesizable components are instantiated in the hdl_top whereas the untimed 

behavioral components that includes the UVM testbench are in the hvl_top. This is shown in Fig 1. The 

synthesized hdl_top runs on the emulator and hvl_top runs on the simulator. The HDL and HVL communicate at 

the transaction level. This communication is enabled by using a SystemVerilog virtual interface. Core-Monitor 

also implements a DPI-C interface that serves as a transactor for the CPU state tracer in the BFM. 

 

The adapter is implemented as a timed HDL module rather than an untimed SystemVerilog UVM class type 

in the HVL domain. It is responsible for the initial processing of processor signals received from the DUT due to 

the uncertainty regarding the conditions under which to capture the processor state signals. This uncertainty is 

primarily because different processors have varying hardware implementations, resulting in a range of conditions 

for when to receive the processor status signal. Additionally, it acknowledges that CPUs with similar cores may 

have varying implementations due to multiple approaches followed by the manufacturer and their design styles. 

As a result, the conditions under which the needed processor status signal is processed and collected will differ.  
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The generated signals will be committed to the iVC interface following the initial processing. The user must 

manually write and instantiate the adapter for 

every processor. The benefit of this method 

is that the user can construct a single adapter 

for a SoC with multiple cores if all of the 

cores use the same processor hardware 

design. This is accomplished by instantiating 

the adapter multiple times, depending on the 

number of similar cores. Thus, the adapter 

can be reused for similar cores in the 

processor. 

 

The iVC interface is a SystemVerilog 

interface comprised of standard signals that 

are recognized by all the processor adapters. 

Hence it is a CPU-independent component. It 

serves as a connection between the CPU-

dependent adapter and the CPU-independent 

iVC BFM. As illustrated in Fig 2, these universal signals include the following, clock signal, cpu_clk and the reset 

signal, cpu_reset_n. The signals for PC tracing, i.e., cpu_pc, cpu_instruction and cpu_pc_valid. It includes the 

signal, reg_data for register tracing. The signals, cpu_mem_addr, cpu_mem_data, cpu_mem_size, cpu_mem_ack, 

and cpu_mem_str_enable are used for memory tracing. Additionally, it features a signal cpu_id, which is helpful 

in getting processor-specific variables from the configuration file in the DPI-C function. The PC count and register 

count are parameterized in the interface definition, allowing them to be overwritten during the instantiation of the 

interface module. Additionally, the interface consists of a parameter cpu_num that specifies the active core of the 

processor, which is helpful in instantiating the interface for multiple cores of the same processor. The interface 

must be declared as a passive modport to allow the Core-Monitor to monitor all essential signals. 

 

The iVC monitor BFM is responsible for collecting the processed signals from the iVC interface. 

Simultaneously, it imports the C function calls via the DPI interface and passes them to the C functions responsible 

for dumping the processor state signals into the corresponding trace files. Moreover, this component is CPU 

independent and does not require any modification from the user. 

 

The SystemVerilog Direct Programming Interface (DPI) is a powerful tool for integrating models written in 

other languages with Verilog designs. This is intended to improve runtime performance and reusability by utilizing 

a higher-level language. The compilation and build phase, which is a substantial time sink in the emulation setup, 

is ramped up with the use of the DPI block. The DPI-C block comprises a .cpp file and a header file containing 

the necessary functions for creating trace files for all processor cores and writing the appropriate signals from the 

iVC BFM via the DPI-C interface. These processor specific trace files are depicted as eswd_coreY.log in Fig 1, 

where Y points to the respective core that is traced. Moreover, it provides simple user interaction as it enables 

direct access to processor-specific variables in the C file via a configuration file. This is named as processor_X.csv 

in Fig 1. Typically, the configuration file contains variables that the user must modify before the iVC is instantiated 

for the same or various processors in use. For instance, this comprises the number of cores in the processor, the 

number of registers, and the names of the register to be traced in the trace file. Table 3 shows an instance of the 

configuration file for a processor with 3 cores and 5 registers. The changes to these configuration variables are 

made at the top level. Hence neither the iVC BFM nor the iVC interface needs to be modified by the user. As a 

result, the DPI-C component is likewise regarded as CPU-independent. Additionally, it is compatible with 

simulation and emulation systems. 

 

Fig 2: CPU-Independent iVC Interface 



 

6 

 

Table 3: Configuration File of a Processor 

CPU_CORES 3     

CPU_CORE_NAMES core1 core2 core3   

CPU_REGS 5     

CPU_REG_NAMES R0 R1 R2 R3 R4 

CPU_INSTRUCTION 1     

 

The top module must instantiate an n-core processor n times. Then, at the top level of the testbench, the iVC 

instances must be configured with the appropriate processor mode and connected to the respective processor. This 

methodology presents a reusable and CPU-independent iVC for processor state tracing. It is necessary to use one 

or more adapters to perform the initial processing of the processor signals. Hence, the Core-Monitor is a unified 

approach for trace file generation in simulation and emulation environments. 

IV. RESULTS 

The Core- Monitor is tested with OpenRISC and RISCV processors in the simulation environment and the IFX 

processor in the emulation environment. This paper presents a use-case for the emulation system using the 

Synopsys emulator ZeBu in the following section. 

A. Use Case 

Infineon Technologies AG provided a SoC project (here 

briefly called IFX project for confidentiality) to support the 

development of the Core-Monitor in the emulation 

environment. Synopsys emulator ZeBu is used for this 

purpose. The IFX processor had nine cores with five active 

cores, and here the adapter was instantiated five times in the 

connect module with the appropriate signals from the DUT to 

the adapter signals. The minimum code required to implement 

such an adapter in SystemVerilog is approximately 290 lines. 

This is core-specific and varies accordingly. Then the iVC 

interface and the IFX processor adapter are instantiated and 

integrated into the IFX project. Furthermore, the iVC BFM is 

instantiated with the iVC interface. After completing the 

Core-Monitor design, the emulation environment has to be set 

up using the emulator ZeBu. Firstly, an RTL testbench variant 

is selected that is provided by the developers of the IFX 

processor. After the desired testbench variant has been 

selected, resource libraries are compiled. Then, the time-

consuming build phase of the ZeBu emulator is started. ZeBu 

supports the build phase in the batch and GUI modes. This 

build operation will compile the HDL part of the testbench and 

the HVL part, including the DPI. This process will approximately take 5 hours for the IFX processor design. Once 

the compilation is complete, the design can be downloaded to an emulator for emulating the design. The emulation 

requires the memory image of the testbench in .sre format. Fig 3 shows the output of the trace file generated for 

one of the IFX processor cores. For instance, in line 6 the register A10 of core0 in the IFX processor is written to 

0xd0009820 (hexadecimal format) at 7176200ps. 

 

The generated trace file is used for post-processing and debugging of the processor design, it is an input to 

post-processing HW/SW co-debugging tools such as Indago that generate debug databases. After preparing the 

debugging databases, Indago ESWD is launched to debug embedded software. The source code, assembly code, 

Fig 3: Trace file obtained for IFX processor 
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and waveform with recorded PC and C functions can be synchronized for debugging purposes. Additionally, the 

user can incorporate hardware signals into the waveform to conduct co-debugging of hardware and software. 

B. Performance Evaluation 

 
Table 4: Emulation Runtime 

Emulation Runtime Core-Monitor Existing Method 

Testcase 1 (with eswd) 3197.3s 3635.9s 

Testcase 1 (without eswd) 160.3s 239.8s 

Testcase 2 (with eswd) 889.2s 921.3s 

Testcase 2 (without eswd) 34.4s 52.7s 

 

The performance comparison between the existing setup for emulation and the Core Monitor setup is compared 

and evaluated. The evaluation metric considered for this purpose is emulation runtime. It is the total time taken 

by the test case to complete the emulation. This time is reported at the end of the complete emulation run of the 

test case and is recorded in seconds. Two test cases, namely, Testcase 1 and Testcase 2, are evaluated using eswd 

[18] option and without using eswd option during the emulation run. The eswd option is necessary for trace file 

generation. The average emulation runtime values for ten runs are recorded in Table 4 for each test case. Testcase 

1 is a long-running test case compared to Testcase 2. For instance, the emulation runtime in the Core- Monitor 

setup for Testcase 1 executed with the eswd option is 53.3 minutes (3197.3 seconds) while it is 60.6 minutes 

(3635.9s) in the existing setup. Similarly, Testcase 1 takes 2.7 minutes (160.3 seconds) and 4 minutes (239.8s) in 

the Core-Monitor and the Existing setup respectively when executed without the eswd option. Table 4 shows that 

the emulation run with the eswd option consumes more time as it will generate trace files with enormous amounts 

of data that impact the overall performance. Hence, developing a Core-Monitor that does not significantly 

deteriorate the performance is critical. It is seen that the Core-Monitor is slightly faster than the existing emulation 

setup for trace file generation. Nonetheless, this is an added advantage as the Core-Monitor setup is user-friendly 

and only requires the user to design a processor-specific adapter, unlike the existing setup where the entire 

structure of the monitor was mainly for a specific processor and was not re-usable. 

V. CONCLUSION 

This paper proposes a novel methodology that targets a reusable Core-Monitor to monitor CPU signals for the 

different kinds of processors. Additionally, this methodology is compatible with being used in simulation and 

emulation platforms. The experimental results demonstrate that the proposed methodology is reusable for the 

different kinds of processors. This is achieved as the user must design only the adapter for the processor. The 

proposed methodology does not require any change in the Core-Monitor components when switching from 

emulation to simulation environment and vice-versa. This is enabled as the Core-Monitor is developed so that it 

can be synthesized in the emulator and in the simulator environments. The experimental evaluation in the two 

environments shows that the new methodology is better and does not significantly deteriorate the performance 

compared to the already existing methods of CPU tracing in the respective platforms. As the SoC design size is 

considerably increasing, the Core-Monitor approach decreases the design of the HW/SW co-debugging technique 

for each processor. It substantially reduces the coding effort of redundant modules and hence increases reusability. 

Furthermore, the developed processor state tracer is designed to be integrated into the automatic testbench 

framework, adding to the reusability factor. 

Since the proposed novel methodology of the Core-Monitor for hardware and software co-debugging is highly 

user-friendly, it is reusable for all kinds of processors. This enables the future developers to integrate many other 

processor types into the currently implemented processor state tracer. The future developers can devise a versatile 

approach capable of parsing the user configuration of the processor in both C functions and SV modules. 
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