
Development of a Core-Monitor for HW/SW Co-
Debugging targetting Emulation Platform

Shreya Morgansgate

Dr. techn. Johannes Grinschgl

Dr. Ing. Djones Lettnin

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

1.

2.

3.

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

1.

2.

3.

Motivation

• The SoC architecture that combines
multiple heterogeneous cores and
IPs are prevalent in a wide range of
applications

• HW/SW co-debugging requires
high effort:
• Complex HW/SW system integration

• More time spent in debugging

• Shortens the time to market

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study [1]

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

1.

2.

4.

5.

3.

What is a Core-Monitor?

• Core-Monitor is required to have a general HW/SW co-debugging
environment for an embedded processor

• It generates a trace file that monitors the run-time behavior of the
CPU

• The trace file is a human understandable log file with executed core
instructions

• This trace file will be input to the debugging tools like Indago [2] for
further processing

Problem Statement(1)

• There is a need to trace interactions across multiple and
heterogeneous processing elements

• There is no universal and reusable solution to trace the processor
state of multiple cores in a processor

• There is no reusable platform to enable switching between simulation
and emulation environments for HW/SW co-debugging

Problem Statement(2)

• The Core Monitor aims to solve this problem:
• It is standard for trace file generation in both the simulation and emulation

environments

• Reusable approach for processors with multiple cores

• Reduces the HW/SW co-debugging time and shortens the time to market

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

Why Emulation?

• Simulation-based techniques are unable to keep-up with today’s
growing size and complexity of designs with software and embedded
processor core models

• Large design projects have moved on to emulation platform for SoC
integration and verification

Emulation Setup

• Zebu Server [3]
• It is a Synopsys emulation system

• In ZeBu emulation, design files and project files are compiled using VCS
simulator

• Direct Programming Interface (DPI) [4]
• System Verilog DPI is an interface for SV to interact with other languages like

C, C++, SystemC

• Zebu supports SV-DPI import calls to the host

• Maximizes runtime efficiency

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

Typical System Flow

Software
Development

Hardware
Development

Trace File Generation Post-Process Debugging Tools

Simulation Based

Emulation Based

Architecture: Core-Monitor

DUT
iVC

interface
iVC Monitor

BFM

OpenRisc
Adapter

Infineon
Adapter

Processor
specific
Adapter

ifx_pc_monitor_cpu.cpp

DPI

Driver
task

Virtual
Interface

test

env

agent

Monitor
task

Virtual
Interface

Driv er Monitor

B
FM

 p
ro

xy

HVL HDL

DPI-C

processor_X.csv eswd_coreY.log

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

Implementation - iVC Interface

• Connects the output from different adapters to the
monitor BFM.

• The signals in the interface are CPU independent
and can be used by all the adapters.

iVC
interface

iVC Monitor
BFM

OpenRisc
Adapter

Infineon
Adapter

Processor
speci fic
Adapter

logic cpu_rst_n; // low active reset

logic cpu_clk; // clock

logic [ifx_pc_monitor_pkg::MAX_PC_LENGTH-1:0] cpu_pc[ifx_pc_monitor_pkg::PC_NUM]; // program counter

logic [ifx_pc_monitor_pkg::MAX_INSTRUCTION_LENGTH-1:0] cpu_instruction[ifx_pc_monitor_pkg::PC_NUM];

logic cpu_pc_valid[ifx_pc_monitor_pkg::PC_NUM]; // particular PC valid

logic [ifx_pc_monitor_pkg::MAX_MEM_ADDR_LENGTH-1:0] cpu_mem_addr; // memory store/load address

logic [ifx_pc_monitor_pkg::MAX_MEM_DATA_LENGTH-1:0] cpu_data; // memory load/store data

logic [ifx_pc_monitor_pkg::MAX_MEM_SIZE:0] cpu_mem_size;

logic cpu_mem_ack; // acknowledgement from the memory subsystem so that the memory write/read operation can proceed

logic cpu_mem_str_enable; // memory write enable

logic [ifx_pc_monitor_pkg::MAX_REG_DATA_LENGTH-1:0] reg_data[ifx_pc_monitor_pkg::MAX_REG_NUM]; // accessed register values

logic [ifx_pc_monitor_pkg::MAX_CPU_ID_NUM:0] cpu_id; // id for processor config file

Implementation - Register Tracing(1)

always@(posedge cpu_clk or negedge cpu_reset_n)
if(!cpu_reset_n) begin

vif.reg_data[0:15] <='{default:0};
end
else begin

if((cpu_rf_we != cpu_rf_we_reg) && cpu_rf_we) begin
vif.reg_data[cpu_rf_wr_addr] <= cpu_rf_wr_data;

end
end

always@(posedge cpu_clk or negedge cpu_reset_n)
...
if((cpu_except_started != cpu_except_started_reg) &&cpu_except_started) begin

vif.reg_data[EPCR0] <= exception_reg[0]; //cpu_epcr;
vif.reg_data[ESR0] <= exception_reg[1]; //cpu_esr;
vif.reg_data[EEAR0] <= exception_reg[2]; //cpu_eear;

end
end

always@(posedge cpu_clk or negedge cpu_reset_n)
...
if((cpu_supervision_reg_we != cpu_supervision_reg_we_reg) && cpu_supervision_reg_we) begin

vif.reg_data[SR] <= cpu_supervision_reg_wr_data;
end

end

Since the registers R0..R15 of the OpenRisc processor are

driven in different clock cycles, they are put in their

corresponding addresses of the interface array

The exception and supervision registers may be driven in the

same cycle and hence they take in the corresponding

addresses of the interface signal array.

Implementation - Register Tracing(2)

• In the case of the Infineon’s processor the register is accessed as a complete
array in the respective adapter.

assign vif.reg_data = register_data;

• Here reg_data is an array with all the register values of the processor.

• It can be updated to each array location where the address is parameterized
in the adapter.

Implementation - Memory Tracing

• The interface signals for memory tracing are as below:
logic [ifx_pc_monitor_pkg::MAX_MEM_ADDR_LENGTH-1:0] cpu_mem_addr; // memory store/load adder

logic [ifx_pc_monitor_pkg::MAX_MEM_DATA_LENGTH-1:0] cpu_mem_data; // memory load/store data

logic [ifx_pc_monitor_pkg::MAX_MEM_SIZE-1:0] cpu_mem_size; // memory size

logic cpu_mem_ack; //acknowledgement from the memory subsystem so that the memory write/read operation can proceed

logic cpu_mem_str_enable; // memory write enable

• The adapter for Infineon’s processor included a FIFO to initially store the
memory signals.

• The OpenRisc processor required an additional if condition.

• The BFM then calls the C functions to write the relevant information into the
trace file.

.

Implementation - PC Tracing

• PC interface signals
logic [ifx_pc_monitor_pkg::MAX_PC_LENGTH-1:0] cpu_pc[CPU_PC_NUM]; // program counter array

logic [ifx_pc_monitor_pkg::MAX_INSTRUCTION_LENGTH-1:0] cpu_instruction[CPU_PC_NUM]; // executed instruction array

logic cpu_pc_valid[CPU_PC_NUM]; // undefined instruction (particular

• PC values from the DUT are assigned to the interface signals in the adapter
using the simple assign statements.

• The signals from the interface are processed in the monitor BFM in every
clock cycle and the PC value is driven in the generate block.

• Once the PC value is processed, it will be used by the C function call via DPI-C
interface for further PC tracing

Implementation – Parameterization

• Interface and BFM definitions are parameterized for PC count and register
count signals
interface ifx_pc_monitor_if#(parameter CPU_PC_NUM = 16, parameter CPU_REG_NUM = 100)(input logic [3:0] cpu_num);

interface ifx_pc_monitor_monitor_bfm#(parameter CPU_PC_NUM = 16, parameter CPU_REG_NUM = 100)(ifx_pc_monitor_if ifc);

• This provides flexibility for heterogeneous cores with varying PC and register
count

Implementation – Processor specific config file

.

.
logic [ifx_pc_monitor_pkg::MAX_CPU_LENGTH-1:0] cpu_id;
// id for the processor config file

.

.
char config_file[50];

sprintf(config_file,“./processor_%d.csv",cpuid);
config_parser(config_file);
.
. processor_2.csv

ifx_pc_monitor_cpu.cpp

processor_X.csv eswd_coreY.log

iVC interface

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

Core-Monitor Setup for Emulation

• Core-Monitor setup for the Emulation environment
with ZeBu emulator.

• Designed an adapter for the Infineon’s processor.

• Successfully generated the trace files.

• The generated trace file is an input to post-processing
HW/SW co-debugging tools such as Indago.

CPU trace of core0 of Infineon processor,eswd_core0.log

Performance Evaluation – Emulation

• The eswd option is necessary for trace file generation.

• Emulation Runtime comparison.

• Results are based on two testcases

• There is no deterioration in performance.

• The Core-Monitor provides a high degree of reusability.

• Substantially decreases the coding-effort.
Emulation Runtime Core-Monitor Existing-Method

Testcase 1 3197.3s (39053.3 Hz) 3635.9s (34344.6 Hz)

Testcase 2 889.2s (32186.3 Hz) 921.3s (31063.8 Hz)

Outline

Motivation

Problem Statement

Methodology

Implementation

Results

1.

2.

4.

5.

5.

3. Technical Background

6.

7. Conclusion

Conclusion

• A novel methodology that targets a reusable Core-Monitor

• Compatible with simulation and emulation platforms

• Designed processor specific adapters for Infineon processor and OpenRisc

• Verified the trace files generated

• No deterioration in performance

• Reduces the coding effort in large SoC designs

References

[1] https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-
research-group-functional-verification-study/

[2] Cadence Design Systems, Indago Embedded Software Debug App User Guide.

[3] Synopsis, Zebu Server User Guide https://www.synopsys.com/verification/emulation/zebu-
server.html

[4] https://www.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-dpi-
tutorial/

Questions?

THANK YOU

