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Abstract - This work presents a UVM SystemVerilog testbench for verifying the functionalities of a multi-standard RF 

transceiver (TRX) with 351 operating modes. To thoroughly verify a highly-reconfigurable analog/mixed-signal design 
using the standard UVM components, the proposed testbench encapsulates all the analog specifics of the DUT and its 
instrumentations in a fixture module described with XMODEL primitives. The testbench generates a test sequence that 
randomly enumerates the operating modes and performs data check, connectivity check, and control signal check for each 
of the operating modes. 100% coverage is achieved by combining four independent simulations with different seed values. 

I. INTRODUCTION 
The key challenge in verifying a multi-standard RF transceiver (TRX) like the one described in [1] is that its 

correct operation must be thoroughly checked for a large number of operating modes, resulting from the 
combination of multiple frequency bands, RF modulation schemes, local oscillator (LO) frequencies, power 
amplifier (PA) and low-noise amplifier (LNA) gain controls, etc., required to support all the specifications defined 
in the standards. A trivial mistake in selecting the active circuit blocks, routing the signals, or decoding the control 
bits can render the whole transceiver IC not functional [2]. 

This paper aims to achieve the full verification coverage of such a highly-reconfigurable analog/mixed-signal 
(AMS) system controlled by a large number of digital modes, utilizing the standardized components from the 
universal verification methodology (UVM) library. Specifically, a scalable and reusable UVM SystemVerilog 
testbench that can verify the functionalities of a 5G/LTE RF TRX model, including the error-free data transmission, 
propagation of the analog RF signals, and decoding the digital controls, over 117 5G/LTE bands and 3 RF 
modulation modes is presented. 

 

 
Figure 1. A block diagram of a 5G/LTE multi-standard RF transceiver [2]. 
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 II. MULTI-STANDARD RF TRANSCEIVER MODEL 
To carry out a verification with UVM, the device-under-test (DUT), in this case, the RF TRX circuit must be 

first modeled in SystemVerilog. Fig. 1 illustrates the overall block diagram of the RF TRX model presented in 
[3]. Its transmitter (TX) path consists of a digital-to-analog converter (DAC), a transmitter baseband circuit (TX 
BB), an up-conversion mixer block (UCM), and a power amplifier (PA) driving the off-chip antenna. On the other 
hand, the receiver (RX) path consists of a low-noise amplifier (LNA), a down-conversion mixer block (DCM), a 
receiver baseband circuit (RX BB), and an analog-to-digital converter (ADC) recovering the received data. Both 
the UCM and DCM blocks are driven by the carrier signals produced by the local oscillator (LO) block. Each 
block must support multiple operating modes, such as multiple ranges of LO frequencies, multiple modulation 
schemes, multiple amplifier gains, multiple filter cut-off frequencies, etc., depending on the choice of the RF 
standards (5G or LTE), bands (LB, MHB, or UHB), or modulations (64, 256, or 1024 QAMs), made at the system 
level. To do so, each block may contain multiple instances of the same circuit, each optimized for a specific 
operating condition, instead of having one covering all operating conditions. As a result, a modern RF TRX system 
can contain multiple local oscillators, multiple mixers, and multiple low-noise amplifiers, and only one of each 
set is selected active for a given operation mode. In addition, each block may contain digital calibration loops to 
compensate various non-idealities in the circuit, such as signal leakage, distortion, and gain or phase mismatches, 
which can contribute to the DC offsets, harmonics, and I/Q phase mismatch, respectively. Except for the initial 
input signal to the TX path (TX_DATA) and the final output signal of the RX path (RX_DATA), most of the signals 
propagating through the TRX paths are baseband or passband analog signals. On the other hand, the control signals 
selecting the operating mode of each block are all digital. The analog/mixed-signal modeling of this highly-
reconfigurable RF TRX in SystemVerilog has been successfully demonstrated in [3], using a set of XMODEL 
primitives offered by Scientific Analog [4]. 
 

 
Figure 2. Organization of the UVM SystemVerilog testbench for a multi-standard RF transceiver. 
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III. UVM SYSTEMVERILOG TESTBENCH 
Fig. 2 illustrates the organization of the proposed UVM testbench to verify the described RF TRX model. 

Following the approach described in [5], all the analog-specific details are encapsulated within a fixture module, 
so that the rest of the testbench can be built using the standard UVM components only, including the driver agent, 
monitor agent, scoreboard, and coverage.  

A. UVM Sequence 
A UVM sequence component defines a series of test cases to be fed to the DUT. In the presented testbench, it 

generates a randomly-ordered sequence of operating modes and for each operating mode, it generates a set of 
randomized data bits to be transmitted.  

To define a set of operating modes to be tested in a scalable way, a separate package file defines a set of 117 
band/frequency modes and set of 3 modulation modes using the arrays named BAND_FREQ[] and QAM[], 
respectively, as listed in Fig. 3. The arrays also define the associated data values for each mode, such as the 
frequency control bits, band name, and number of modulation symbols supported. 

Fig. 4 illustrates how the UVM sequence component is organized to generate a sequence of test cases. First, an 
instance of a uvm_sequence_item-derivative class named TX_PKT containing the indices for the band/frequency 
mode and modulation mode is created and randomized. The index values are defined as a packed struct type 
(operation_bit), so that the randomized value range of each index can be set by the size of the BAND_FREQ[] or 
QAM[] arrays. Second, using the randomized indices, the control bits selecting the band (sel_band_bit), the LO 
frequency (ctrl_LO_bit), and the modulation scheme (sel_qam_bit) are read from the BAND_FREQ[] and QAM[] 
arrays. Third, for each operation mode selected, a set of data bits to be transmitted are randomized. The sequence 
component transmits a total of N symbols per operation mode, where N is the product of the number of modulation 
symbols (qam_mode) and a user-defined constant TRIALS. 

B. Driver Agent and Monitor Agent 
The driver agent, including the sequencer and driver components, drives a sequence of data packets (TX_PKT)  

as triggered by a packet clock via the virtual interface named VDIF, connected to the interface named DIF of the 
fixture module. The sequencer alternates between two sequences: the initialization sequence and the data sequence 
explained in the previous subsection. During the initialization sequence, indicating that the band/frequency or 
modulation mode is about to change, the driver switches the control codes to the DUT and waits for its calibration 
loops to settle. During the data sequence, the driver starts driving the data bits to the DUT. 

The monitor agent, on the other hand, receives a sequence of data packets via the virtual interface named VMIF, 
connected to the interface named MIF of the fixture module. The monitor component forwards the received data 
packet (RX_PKT) to the scoreboard component.  
 

   
Figure 3. The arrays defining the sets of band/frequency modes and QAM modes to be tested. 

 
 

typedef struct{ 
  int band; 
  bit [5:0] freq; 
  string band_name; 
} BAND_FREQ_MODE; 
 
BAND_FREQ_MODE BAND_FREQ[] = '{ 
  '{2, 6’b100010, "LTE_BAND1"}, 
  '{2, 6’b011000, "LTE_BAND2"}, 
  '{2, 6'b010011, "LTE_BAND3"}, 
  '{2, 6'b001110, "LTE_BAND4"}, 
  ... 
}; 

typedef struct { 
  int qam_bit; 
  int qam_mode; 
} QAM_MODE; 
  
QAM_MODE QAM[] = '{ 
  '{1, 64}, 
  '{2, 256}, 
  '{4, 1024} 
}; 
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(a) 

  
(b) 

Figure 4. The definition of (a) the sequence item (i.e. packet) and (b) the body task of the sequence component.  

C. Scoreboard 
The scoreboard component collects the results contained in the packets from the driver and monitor agents. The 

packets from the driver (TX_PKT) contain the stimuli and the packets from the monitor (RX_PKT) contain the 
corresponding responses, such as the results of the data checks, connectivity checks, control signal checks, and 
EVM measurements. As for the control signal checks, the packets from the monitor contain the analog values that 
the DUT generated from the control bit values. The scoreboard compares them against the expected values to 
check whether the control bits are being interpreted correctly by the DUT. As for the EVM measurement, the 
scoreboard keeps the record of the worst-case EVM value for each operating mode.  

The scoreboard component stores the results in a scorecard object, which not only contains an array named 
DATA to store the check results, but also defines a method to print the results in a table format.  

D. Coverage 
The coverage component collects the coverage metrics and measures whether all the operation modes and all 

the modulation symbols have been exercised during the simulation. Its class is derived from the uvm_subscriber 
class, which has a built-in analysis port to receive the packets from the driver agent. The coverage component also 
measures two cross coverage metrics: the cross coverage between the band and QAM modes, and the cross 
coverage among the data symbol, band, and QAM modes. The first one checks whether all the operating modes 
have been enumerated and the second one checks whether all the data symbols have been exercised for each 
operating mode. The total number of cases for the second cross coverage is 157,248, which is very large. 

typedef struct packed { 
  bit [9:0] band_bit;                       
  bit [9:0] qam_bit; 
} operation_bit;  
 
class PACKET extends uvm_sequence_item; 
  randc operation_bit OP; 
  rand bit [9:0] TX_DATA; 
  ... 
endclass: PACKET 
 

task body(); 
  TX_PKT = PACKET::type_id::create(“TX_PKT”); 

TX_PKT.randomize() with { 
  OP.band_bit inside {0:BAND_FREQ.size-1}; 
  OP.qam_bit inside {0:QAM.size-1}; 

  }; 
 
  TX_PKT.sel_band_bit = BAND_FREQ[TX_PKT.OP.band_bit].band; 

TX_PKT.ctrl_LO_bit = BAND_FREQ[TX_PKT.OP.band_bit].freq; 
  TX_PKT.sel_qam_bit = QAM[TX_PKT.OP.qam_bit].qam_bit; 
  TX_PKT.qam_mode = QAM[TX_PKT.OP.qam_bit].qam_mode; 
 
  count = 0; 

while (count < TX_PKT.qam_mode*TRIALS) begin 
  start_item(TX_PKT); 
  TX_PKT.randomize(TX_DATA) with { 
 TX_DATA inside {[0:QAM[TX_PKT.OP.qam_bit].qam_mode]}; 
  }; 

    finish_item(TX_PKT); 
    count++; 
  end 
endtask: body 
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IV. FIXTURE MODULE 

The fixture module illustrated in Fig. 5 contains the RF TRX model and the testbench instrumentations to supply 
its stimuli and measure its responses. As stated earlier, this fixture module is the only module that contains 
analog/mixed-signal model and testbench instrumentations described using the XMODEL primitives, so that the 
rest of the testbench can be built using the standard UVM components. The RF TRX DUT is operating in a loop-
back mode. Via the interface DIF, the fixture module receives the control bits and randomized data bits from the 
driver agent. The fixture module then feeds the control bits directly to the DUT to select its operating mode. It 
also performs QAM modulation to drive the data input (TX_DATA) and QAM demodulation to check the data 
output (RX_DATA) of the DUT. In addition to this data check, the fixture module also performs the 
connectivity/control check, measures the error vector magnitude (EVM) of the RF output (TX_OUT), and sends 
all the results to the monitor agent via the interface MIF. 

 

 
Figure 5. The fixture module encapsulating the device-under-test (DUT) and its instrumentations. 

As for the data check, since the DUT model encompasses only the analog front-end (AFE) of the RF TRX, the 
fixture module must emulate some of the functionalities of the digital back-end processor, performing the 
orthogonal frequency-division multiplexing (OFDM) modulation and demodulation. For the purpose of verifying 
the AFE, it is deemed sufficient to emulate the data transmission via a single OFDM sub-channel only, 
transmitting and receiving a pair of I/Q data via quadrature amplitude modulation (QAM). The fixture module 
receives 10-bit randomized data from the driver agent (TX_PKT.TX_DATA), of which lower 5 bits indicate the I 
data value and upper 5 bits indicate Q data value. These I and Q values are modulated with the sub-channel I/Q 
carrier signals via analog multiplications, and their results are converted to digital to emulate the outputs of a 
OFDM baseband processor, and fed to the TX_DATA input of the RF TRX DUT. Fig. 6 lists the codes of the 
QAM data generator. 
 

 
Figure 6. The QAM data generator emulating a single OFDM sub-channel. 

always @(posedge OFDM_clk) begin 
  I_bit = TX_PKT.TX_DATA[4:0]; 
  Q_bit = TX_PKT.TX_DATA[9:5]; 
  I_mod += I_bit * A_I * cos(2*M_PI*k/N); 
  Q_mod += Q_bit * A_Q * sin(2*M_PI*k/N); 
  k++; 
 
  if (k == N) begin 
    I_dig = int'(I_mod / N / LSB); 
    Q_dig = int'(Q_mod / N / LSB); 
    k = 0; 
  end 
end 
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On the other hand, when the RF TRX model returns the received data output RX_DATA, the fixture module 
performs QAM demodulation and extracts the received I/Q values. It compares these values against the 
transmitted I/Q values and determines if any transmission errors have occurred. The data check results are sent to 
the monitor agent. 

The fixture module adds various assertion checks inside the blocks of the RF TRX model to check their 
connectivity based on the selected operating mode. These assertion checks are useful in catching trivial errors 
when selecting the active instance among multiple circuit instances within a block and when routing connections 
among the blocks, without having to examine the correctness of the data bits transmitted and received. 
Recognizing that most of the signals propagating between the blocks are amplitude-modulated RF signals of which 
carrier frequencies change with the selected band (LB, MHB, and UHB), the connectivity assertion checks measure 
the carrier frequency of each RF signal and check if it is within the correct range. Two XMODEL primitives are 
used to measure the carrier frequency of each RF signal: trig_cross and meas_freq. The trig_cross primitive 
generates a trigger signal indicating when the RF input signal crosses its DC offset value, and the meas_freq 
primitive measures the frequency of the trigger signal. Using the result, the assertion checks can examine if the 
frequency is within the correct range for the selected band.  

Fig. 7 lists three assertion properties defined for a given RF signal, each checking the carrier frequency for LB, 
MHB, and UHB modes, respectively. Fig. 8(a) shows an excerpt of the report generated by the assertion checks 
during the SystemVerilog simulation. At the UVM_HIGH verbosity mode, the report displays “PASS” for each 
correct connection and “FAIL” for each incorrect connection. In addition, the cover properties are defined to 
measure whether these connection checks have been triggered during the simulation. An excerpt of the report in 
Fig. 8(b) generated after the simulation is completed displays the number of matches for each assertion check. 

 
Figure 7. The assertion checks for checking the connectivity of RF signals. 

      
(a)                                                                         (b) 

Figure 8. (a) The assert property report and (b) cover property report generated by the simulation. 

property LB_I_connection; 
  @(posedge CALIB) 
  $rose(CTRL_IN.sel_band_bit == 3'b001) |-> 
     0.4e9 <= LO_LB_I_freq && 
     LO_LB_I_freq <= 1.0e9; 
endproperty: LB_I_connection 
 
property MHB_I_connection; 
  @(posedge CALIB) 
  $rose(CTRL_IN.sel_band_bit == 3'b010) |-> 
     1.4e9 <= LO_MHB_I_freq && 
     LO_MHB_I_freq <= 2.7e9; 
endproperty: MHB_I_connection 
 
property UHB_I_connection; 
  @(posedge CALIB) 
  $rose(CTRL_IN.sel_band_bit == 3'b100) |-> 
     3.3e9 <= LO_UHB_I_freq && 
     LO_UHB_I_freq <= 6e9; 
endproperty: UHB_I_connection 
 
... 
 

always @(posedge CALIB) begin 
  if (CTRL_IN.sel_band_bit == 3'b001) begin 
    LB_I: cover property (LB_I_connection); 
    LB_I_CONN: 
      assert property (LB_I_connection) 
        uvm_report_info(“LB I:PASS”, UVM_HIGH); 
      else 
        uvm_report_info(“LB I:FAIL”, UVM_LOW); 
  end 
  if (CTRL_IN.sel_band_bit == 3'b010) begin 
    MHB_I: cover property (MHB_I_connection); 
    MHB_I_CONN: 
      assert property (MHB_I_connection) 
        uvm_report_info(“MHB I:PASS”, UVM_HIGH); 
      else 
        uvm_report_info(“MHB I:FAIL”, UVM_LOW); 

end 
  if (CTRL_IN.sel_band_bit == 3'b100) begin 
    UHB_I: cover property (UHB_I_connection); 
    UHB_I_CONN: 
      assert property (UHB_I_connection) 
        uvm_report_info(“UHB I:PASS”, UVM_HIGH); 
      else 
        uvm_report_info(“UHB I:FAIL”, UVM_LOW); 

end 
... 

end 



 

7 
 

The fixture module also performs control signal checks. In other words, it verifies whether various digital 
control bits adjusting the analog properties of the circuit are correctly encoded to carry the information. These 
control checks are precautionary measures to prevent trivial mistakes such as bit-order mismatch, encoding 
mismatch (e.g. two’s complement vs. sign-magnitude), polarity inversion, etc. Assuming that each block within 
the RF TRX model uses a kind of digital-to-analog converter (DAC) to convert the digital control code to an 
equivalent analog value, the fixture module captures the outputs of these DACs and send them to the monitor 
agent. The scoreboard then compares the values against the expected values and determines if the check passes or 
fails. 

Finally, the fixture module measures the EVM and collects the traces for the QAM constellation diagram as the 
quality of the transmitted signal. To do so, the fixture module performs an ideal QAM demodulation on the 
transmitted output (TX_OUT) using an effective carrier signal, of which frequency is equal to the sum of the LO 
carrier frequency and OFDM sub-channel carrier frequency. The demodulated I/Q values are compared against 
the intended I/Q values. Computing the root-mean-squared value of these differences yields the EVM. Also, the 
traces of the demodulated I/Q values are recorded into a file, which is then post-processed after the simulation to 
plot the QAM constellation diagram. 

V. RESULTS 
The described UVM testbench was used to verify the RF TRX model operating over 117 5G/LTE bands and 3 

QAM modulation modes, resulting in a total of 351 operating modes. Fig. 9 shows the excerpts of the simulation 
log and scoreboard report generated by the simulation, reporting the results of the I/Q data checks, connectivity 
checks, and control signal checks. The worst-case EVM values for each modulation mode over all the frequency 
bands are 2.3% for 64-QAM, 1.4% for 256-QAM, and 0.7% for 1024-QAM, all satisfying the 3GPP standard. 

Fig. 10 shows the QAM constellation diagrams plotted for 64-QAM (LTE band 11), 256-QAM (LTE band 25), 
and 1024-QAM (LTE band 53) modes. For each constellation diagram, the blue and red dots represent the 
reference and transmitted I/Q symbols, respectively. All the red dots are located sufficiently near the blue dots, 
confirming that the EVMs are within the satisfactory range.  

To reach 100% coverage sooner, it is common to run multiple simulations with different random seeds and 
merge their results. As an example, Fig. 11 shows two coverage reports each with the seed value of 418 and 911, 
respectively (TRIALS=3). In the report, the BAND-QAM coverage means the cross coverage between the band 
and QAM modes and the DATA-QAM coverage means the cross coverage among the data symbol, band, and 
QAM modes. Fig. 12 shows the final coverage report merging the results from four simulations with different 
seed values. In the table, the cross_64, cross_256, and cross_1024 entries report the BAND-QAM coverages and 
cross_64_tx, cross_256_tx, cross_1024_tx entries report the DATA-QAM coverages. 

 

             
Figure 9. Excerpts of the simulation log (left) and scoreboard report (right). 
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(a)                                                  (b)                                                  (c) 
Figure 10. The simulated QAM constellation diagrams for (a) 64 QAM, (b) 256 QAM and (c) 1024 QAM. 

 

       
(a)                                                                        (b) 

Figure 11. Two coverage reports with TRIALS =3: (a) seed value = 418 and (b) seed value = 911. 

 
Figure 12. The combined coverage report showing that 100% coverage is achieved. 

 VI. CONCLUSION 
This work demonstrated how to harness the strengths of UVM and SystemVerilog to verify a highly-

reconfigurable, analog/mixed-signal RF transceiver IC. The proposed testbench encapsulates the analog specifics 
of the DUT within a well-defined fixture module, enabling the use of standard UVM components for the rest of 
the testbench and performing extensive analog/mixed-signal verification thoroughly checking each and every 
operating mode. Also, the sequences enumerating the operating modes can be easily scaled and reused. The 
presented testbench performed three functionality checks over a total of 351 operating modes: data check, 
connectivity check, and control signal check. The SystemVerilog simulation produces a log containing the 
scoreboard table, cover property report, and coverage report. 100% coverage is achieved by combining 4 
simulation results. The total simulation time is 197 minutes. 
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