

1

A UVM SystemVerilog Testbench for 5G/LTE
Multi-Standard RF Transceiver

Byeong Kyu Kim and Jaeha Kim
Seoul National University, Seoul, Korea
bkkim@mics.snu.ac.kr, jaeha@snu.ac.kr

Abstract - This work presents a UVM SystemVerilog testbench for verifying the functionalities of a multi-standard RF

transceiver (TRX) with 351 operating modes. To thoroughly verify a highly-reconfigurable analog/mixed-signal design
using the standard UVM components, the proposed testbench encapsulates all the analog specifics of the DUT and its
instrumentations in a fixture module described with XMODEL primitives. The testbench generates a test sequence that
randomly enumerates the operating modes and performs data check, connectivity check, and control signal check for each
of the operating modes. 100% coverage is achieved by combining four independent simulations with different seed values.

I. INTRODUCTION
The key challenge in verifying a multi-standard RF transceiver (TRX) like the one described in [1] is that its

correct operation must be thoroughly checked for a large number of operating modes, resulting from the
combination of multiple frequency bands, RF modulation schemes, local oscillator (LO) frequencies, power
amplifier (PA) and low-noise amplifier (LNA) gain controls, etc., required to support all the specifications defined
in the standards. A trivial mistake in selecting the active circuit blocks, routing the signals, or decoding the control
bits can render the whole transceiver IC not functional [2].

This paper aims to achieve the full verification coverage of such a highly-reconfigurable analog/mixed-signal
(AMS) system controlled by a large number of digital modes, utilizing the standardized components from the
universal verification methodology (UVM) library. Specifically, a scalable and reusable UVM SystemVerilog
testbench that can verify the functionalities of a 5G/LTE RF TRX model, including the error-free data transmission,
propagation of the analog RF signals, and decoding the digital controls, over 117 5G/LTE bands and 3 RF
modulation modes is presented.

Figure 1. A block diagram of a 5G/LTE multi-standard RF transceiver [2].

2

 II. MULTI-STANDARD RF TRANSCEIVER MODEL
To carry out a verification with UVM, the device-under-test (DUT), in this case, the RF TRX circuit must be

first modeled in SystemVerilog. Fig. 1 illustrates the overall block diagram of the RF TRX model presented in
[3]. Its transmitter (TX) path consists of a digital-to-analog converter (DAC), a transmitter baseband circuit (TX
BB), an up-conversion mixer block (UCM), and a power amplifier (PA) driving the off-chip antenna. On the other
hand, the receiver (RX) path consists of a low-noise amplifier (LNA), a down-conversion mixer block (DCM), a
receiver baseband circuit (RX BB), and an analog-to-digital converter (ADC) recovering the received data. Both
the UCM and DCM blocks are driven by the carrier signals produced by the local oscillator (LO) block. Each
block must support multiple operating modes, such as multiple ranges of LO frequencies, multiple modulation
schemes, multiple amplifier gains, multiple filter cut-off frequencies, etc., depending on the choice of the RF
standards (5G or LTE), bands (LB, MHB, or UHB), or modulations (64, 256, or 1024 QAMs), made at the system
level. To do so, each block may contain multiple instances of the same circuit, each optimized for a specific
operating condition, instead of having one covering all operating conditions. As a result, a modern RF TRX system
can contain multiple local oscillators, multiple mixers, and multiple low-noise amplifiers, and only one of each
set is selected active for a given operation mode. In addition, each block may contain digital calibration loops to
compensate various non-idealities in the circuit, such as signal leakage, distortion, and gain or phase mismatches,
which can contribute to the DC offsets, harmonics, and I/Q phase mismatch, respectively. Except for the initial
input signal to the TX path (TX_DATA) and the final output signal of the RX path (RX_DATA), most of the signals
propagating through the TRX paths are baseband or passband analog signals. On the other hand, the control signals
selecting the operating mode of each block are all digital. The analog/mixed-signal modeling of this highly-
reconfigurable RF TRX in SystemVerilog has been successfully demonstrated in [3], using a set of XMODEL
primitives offered by Scientific Analog [4].

Figure 2. Organization of the UVM SystemVerilog testbench for a multi-standard RF transceiver.

3

III. UVM SYSTEMVERILOG TESTBENCH
Fig. 2 illustrates the organization of the proposed UVM testbench to verify the described RF TRX model.

Following the approach described in [5], all the analog-specific details are encapsulated within a fixture module,
so that the rest of the testbench can be built using the standard UVM components only, including the driver agent,
monitor agent, scoreboard, and coverage.

A. UVM Sequence
A UVM sequence component defines a series of test cases to be fed to the DUT. In the presented testbench, it

generates a randomly-ordered sequence of operating modes and for each operating mode, it generates a set of
randomized data bits to be transmitted.

To define a set of operating modes to be tested in a scalable way, a separate package file defines a set of 117
band/frequency modes and set of 3 modulation modes using the arrays named BAND_FREQ[] and QAM[],
respectively, as listed in Fig. 3. The arrays also define the associated data values for each mode, such as the
frequency control bits, band name, and number of modulation symbols supported.

Fig. 4 illustrates how the UVM sequence component is organized to generate a sequence of test cases. First, an
instance of a uvm_sequence_item-derivative class named TX_PKT containing the indices for the band/frequency
mode and modulation mode is created and randomized. The index values are defined as a packed struct type
(operation_bit), so that the randomized value range of each index can be set by the size of the BAND_FREQ[] or
QAM[] arrays. Second, using the randomized indices, the control bits selecting the band (sel_band_bit), the LO
frequency (ctrl_LO_bit), and the modulation scheme (sel_qam_bit) are read from the BAND_FREQ[] and QAM[]
arrays. Third, for each operation mode selected, a set of data bits to be transmitted are randomized. The sequence
component transmits a total of N symbols per operation mode, where N is the product of the number of modulation
symbols (qam_mode) and a user-defined constant TRIALS.

B. Driver Agent and Monitor Agent
The driver agent, including the sequencer and driver components, drives a sequence of data packets (TX_PKT)

as triggered by a packet clock via the virtual interface named VDIF, connected to the interface named DIF of the
fixture module. The sequencer alternates between two sequences: the initialization sequence and the data sequence
explained in the previous subsection. During the initialization sequence, indicating that the band/frequency or
modulation mode is about to change, the driver switches the control codes to the DUT and waits for its calibration
loops to settle. During the data sequence, the driver starts driving the data bits to the DUT.

The monitor agent, on the other hand, receives a sequence of data packets via the virtual interface named VMIF,
connected to the interface named MIF of the fixture module. The monitor component forwards the received data
packet (RX_PKT) to the scoreboard component.

Figure 3. The arrays defining the sets of band/frequency modes and QAM modes to be tested.

typedef struct{
 int band;
 bit [5:0] freq;
 string band_name;
} BAND_FREQ_MODE;

BAND_FREQ_MODE BAND_FREQ[] = '{
 '{2, 6’b100010, "LTE_BAND1"},
 '{2, 6’b011000, "LTE_BAND2"},
 '{2, 6'b010011, "LTE_BAND3"},
 '{2, 6'b001110, "LTE_BAND4"},
 ...
};

typedef struct {
 int qam_bit;
 int qam_mode;
} QAM_MODE;

QAM_MODE QAM[] = '{
 '{1, 64},
 '{2, 256},
 '{4, 1024}
};

4

(a)

(b)

Figure 4. The definition of (a) the sequence item (i.e. packet) and (b) the body task of the sequence component.

C. Scoreboard
The scoreboard component collects the results contained in the packets from the driver and monitor agents. The

packets from the driver (TX_PKT) contain the stimuli and the packets from the monitor (RX_PKT) contain the
corresponding responses, such as the results of the data checks, connectivity checks, control signal checks, and
EVM measurements. As for the control signal checks, the packets from the monitor contain the analog values that
the DUT generated from the control bit values. The scoreboard compares them against the expected values to
check whether the control bits are being interpreted correctly by the DUT. As for the EVM measurement, the
scoreboard keeps the record of the worst-case EVM value for each operating mode.

The scoreboard component stores the results in a scorecard object, which not only contains an array named
DATA to store the check results, but also defines a method to print the results in a table format.

D. Coverage
The coverage component collects the coverage metrics and measures whether all the operation modes and all

the modulation symbols have been exercised during the simulation. Its class is derived from the uvm_subscriber
class, which has a built-in analysis port to receive the packets from the driver agent. The coverage component also
measures two cross coverage metrics: the cross coverage between the band and QAM modes, and the cross
coverage among the data symbol, band, and QAM modes. The first one checks whether all the operating modes
have been enumerated and the second one checks whether all the data symbols have been exercised for each
operating mode. The total number of cases for the second cross coverage is 157,248, which is very large.

typedef struct packed {
 bit [9:0] band_bit;
 bit [9:0] qam_bit;
} operation_bit;

class PACKET extends uvm_sequence_item;
 randc operation_bit OP;
 rand bit [9:0] TX_DATA;
 ...
endclass: PACKET

task body();
 TX_PKT = PACKET::type_id::create(“TX_PKT”);

TX_PKT.randomize() with {
 OP.band_bit inside {0:BAND_FREQ.size-1};
 OP.qam_bit inside {0:QAM.size-1};

 };

 TX_PKT.sel_band_bit = BAND_FREQ[TX_PKT.OP.band_bit].band;

TX_PKT.ctrl_LO_bit = BAND_FREQ[TX_PKT.OP.band_bit].freq;
 TX_PKT.sel_qam_bit = QAM[TX_PKT.OP.qam_bit].qam_bit;
 TX_PKT.qam_mode = QAM[TX_PKT.OP.qam_bit].qam_mode;

 count = 0;

while (count < TX_PKT.qam_mode*TRIALS) begin
 start_item(TX_PKT);
 TX_PKT.randomize(TX_DATA) with {
 TX_DATA inside {[0:QAM[TX_PKT.OP.qam_bit].qam_mode]};
 };

 finish_item(TX_PKT);
 count++;
 end
endtask: body

5

IV. FIXTURE MODULE

The fixture module illustrated in Fig. 5 contains the RF TRX model and the testbench instrumentations to supply
its stimuli and measure its responses. As stated earlier, this fixture module is the only module that contains
analog/mixed-signal model and testbench instrumentations described using the XMODEL primitives, so that the
rest of the testbench can be built using the standard UVM components. The RF TRX DUT is operating in a loop-
back mode. Via the interface DIF, the fixture module receives the control bits and randomized data bits from the
driver agent. The fixture module then feeds the control bits directly to the DUT to select its operating mode. It
also performs QAM modulation to drive the data input (TX_DATA) and QAM demodulation to check the data
output (RX_DATA) of the DUT. In addition to this data check, the fixture module also performs the
connectivity/control check, measures the error vector magnitude (EVM) of the RF output (TX_OUT), and sends
all the results to the monitor agent via the interface MIF.

Figure 5. The fixture module encapsulating the device-under-test (DUT) and its instrumentations.

As for the data check, since the DUT model encompasses only the analog front-end (AFE) of the RF TRX, the
fixture module must emulate some of the functionalities of the digital back-end processor, performing the
orthogonal frequency-division multiplexing (OFDM) modulation and demodulation. For the purpose of verifying
the AFE, it is deemed sufficient to emulate the data transmission via a single OFDM sub-channel only,
transmitting and receiving a pair of I/Q data via quadrature amplitude modulation (QAM). The fixture module
receives 10-bit randomized data from the driver agent (TX_PKT.TX_DATA), of which lower 5 bits indicate the I
data value and upper 5 bits indicate Q data value. These I and Q values are modulated with the sub-channel I/Q
carrier signals via analog multiplications, and their results are converted to digital to emulate the outputs of a
OFDM baseband processor, and fed to the TX_DATA input of the RF TRX DUT. Fig. 6 lists the codes of the
QAM data generator.

Figure 6. The QAM data generator emulating a single OFDM sub-channel.

always @(posedge OFDM_clk) begin
 I_bit = TX_PKT.TX_DATA[4:0];
 Q_bit = TX_PKT.TX_DATA[9:5];
 I_mod += I_bit * A_I * cos(2*M_PI*k/N);
 Q_mod += Q_bit * A_Q * sin(2*M_PI*k/N);
 k++;

 if (k == N) begin
 I_dig = int'(I_mod / N / LSB);
 Q_dig = int'(Q_mod / N / LSB);
 k = 0;
 end
end

6

On the other hand, when the RF TRX model returns the received data output RX_DATA, the fixture module
performs QAM demodulation and extracts the received I/Q values. It compares these values against the
transmitted I/Q values and determines if any transmission errors have occurred. The data check results are sent to
the monitor agent.

The fixture module adds various assertion checks inside the blocks of the RF TRX model to check their
connectivity based on the selected operating mode. These assertion checks are useful in catching trivial errors
when selecting the active instance among multiple circuit instances within a block and when routing connections
among the blocks, without having to examine the correctness of the data bits transmitted and received.
Recognizing that most of the signals propagating between the blocks are amplitude-modulated RF signals of which
carrier frequencies change with the selected band (LB, MHB, and UHB), the connectivity assertion checks measure
the carrier frequency of each RF signal and check if it is within the correct range. Two XMODEL primitives are
used to measure the carrier frequency of each RF signal: trig_cross and meas_freq. The trig_cross primitive
generates a trigger signal indicating when the RF input signal crosses its DC offset value, and the meas_freq
primitive measures the frequency of the trigger signal. Using the result, the assertion checks can examine if the
frequency is within the correct range for the selected band.

Fig. 7 lists three assertion properties defined for a given RF signal, each checking the carrier frequency for LB,
MHB, and UHB modes, respectively. Fig. 8(a) shows an excerpt of the report generated by the assertion checks
during the SystemVerilog simulation. At the UVM_HIGH verbosity mode, the report displays “PASS” for each
correct connection and “FAIL” for each incorrect connection. In addition, the cover properties are defined to
measure whether these connection checks have been triggered during the simulation. An excerpt of the report in
Fig. 8(b) generated after the simulation is completed displays the number of matches for each assertion check.

Figure 7. The assertion checks for checking the connectivity of RF signals.

(a) (b)

Figure 8. (a) The assert property report and (b) cover property report generated by the simulation.

property LB_I_connection;
 @(posedge CALIB)
 $rose(CTRL_IN.sel_band_bit == 3'b001) |->
 0.4e9 <= LO_LB_I_freq &&
 LO_LB_I_freq <= 1.0e9;
endproperty: LB_I_connection

property MHB_I_connection;
 @(posedge CALIB)
 $rose(CTRL_IN.sel_band_bit == 3'b010) |->
 1.4e9 <= LO_MHB_I_freq &&
 LO_MHB_I_freq <= 2.7e9;
endproperty: MHB_I_connection

property UHB_I_connection;
 @(posedge CALIB)
 $rose(CTRL_IN.sel_band_bit == 3'b100) |->
 3.3e9 <= LO_UHB_I_freq &&
 LO_UHB_I_freq <= 6e9;
endproperty: UHB_I_connection

...

always @(posedge CALIB) begin
 if (CTRL_IN.sel_band_bit == 3'b001) begin
 LB_I: cover property (LB_I_connection);
 LB_I_CONN:
 assert property (LB_I_connection)
 uvm_report_info(“LB I:PASS”, UVM_HIGH);
 else
 uvm_report_info(“LB I:FAIL”, UVM_LOW);
 end
 if (CTRL_IN.sel_band_bit == 3'b010) begin
 MHB_I: cover property (MHB_I_connection);
 MHB_I_CONN:
 assert property (MHB_I_connection)
 uvm_report_info(“MHB I:PASS”, UVM_HIGH);
 else
 uvm_report_info(“MHB I:FAIL”, UVM_LOW);

end
 if (CTRL_IN.sel_band_bit == 3'b100) begin
 UHB_I: cover property (UHB_I_connection);
 UHB_I_CONN:
 assert property (UHB_I_connection)
 uvm_report_info(“UHB I:PASS”, UVM_HIGH);
 else
 uvm_report_info(“UHB I:FAIL”, UVM_LOW);

end
...

end

7

The fixture module also performs control signal checks. In other words, it verifies whether various digital
control bits adjusting the analog properties of the circuit are correctly encoded to carry the information. These
control checks are precautionary measures to prevent trivial mistakes such as bit-order mismatch, encoding
mismatch (e.g. two’s complement vs. sign-magnitude), polarity inversion, etc. Assuming that each block within
the RF TRX model uses a kind of digital-to-analog converter (DAC) to convert the digital control code to an
equivalent analog value, the fixture module captures the outputs of these DACs and send them to the monitor
agent. The scoreboard then compares the values against the expected values and determines if the check passes or
fails.

Finally, the fixture module measures the EVM and collects the traces for the QAM constellation diagram as the
quality of the transmitted signal. To do so, the fixture module performs an ideal QAM demodulation on the
transmitted output (TX_OUT) using an effective carrier signal, of which frequency is equal to the sum of the LO
carrier frequency and OFDM sub-channel carrier frequency. The demodulated I/Q values are compared against
the intended I/Q values. Computing the root-mean-squared value of these differences yields the EVM. Also, the
traces of the demodulated I/Q values are recorded into a file, which is then post-processed after the simulation to
plot the QAM constellation diagram.

V. RESULTS
The described UVM testbench was used to verify the RF TRX model operating over 117 5G/LTE bands and 3

QAM modulation modes, resulting in a total of 351 operating modes. Fig. 9 shows the excerpts of the simulation
log and scoreboard report generated by the simulation, reporting the results of the I/Q data checks, connectivity
checks, and control signal checks. The worst-case EVM values for each modulation mode over all the frequency
bands are 2.3% for 64-QAM, 1.4% for 256-QAM, and 0.7% for 1024-QAM, all satisfying the 3GPP standard.

Fig. 10 shows the QAM constellation diagrams plotted for 64-QAM (LTE band 11), 256-QAM (LTE band 25),
and 1024-QAM (LTE band 53) modes. For each constellation diagram, the blue and red dots represent the
reference and transmitted I/Q symbols, respectively. All the red dots are located sufficiently near the blue dots,
confirming that the EVMs are within the satisfactory range.

To reach 100% coverage sooner, it is common to run multiple simulations with different random seeds and
merge their results. As an example, Fig. 11 shows two coverage reports each with the seed value of 418 and 911,
respectively (TRIALS=3). In the report, the BAND-QAM coverage means the cross coverage between the band
and QAM modes and the DATA-QAM coverage means the cross coverage among the data symbol, band, and
QAM modes. Fig. 12 shows the final coverage report merging the results from four simulations with different
seed values. In the table, the cross_64, cross_256, and cross_1024 entries report the BAND-QAM coverages and
cross_64_tx, cross_256_tx, cross_1024_tx entries report the DATA-QAM coverages.

Figure 9. Excerpts of the simulation log (left) and scoreboard report (right).

8

(a) (b) (c)
Figure 10. The simulated QAM constellation diagrams for (a) 64 QAM, (b) 256 QAM and (c) 1024 QAM.

(a) (b)

Figure 11. Two coverage reports with TRIALS =3: (a) seed value = 418 and (b) seed value = 911.

Figure 12. The combined coverage report showing that 100% coverage is achieved.

 VI. CONCLUSION
This work demonstrated how to harness the strengths of UVM and SystemVerilog to verify a highly-

reconfigurable, analog/mixed-signal RF transceiver IC. The proposed testbench encapsulates the analog specifics
of the DUT within a well-defined fixture module, enabling the use of standard UVM components for the rest of
the testbench and performing extensive analog/mixed-signal verification thoroughly checking each and every
operating mode. Also, the sequences enumerating the operating modes can be easily scaled and reused. The
presented testbench performed three functionality checks over a total of 351 operating modes: data check,
connectivity check, and control signal check. The SystemVerilog simulation produces a log containing the
scoreboard table, cover property report, and coverage report. 100% coverage is achieved by combining 4
simulation results. The total simulation time is 197 minutes.

ACKNOWLEDGMENT

The EDA tools were supported by the IC Design Education Center and Scientific Analog, Inc.

VII. REFERENCES
[1] J. Lee, et al., "A Sub-6GHz 5G New Radio RF Transceiver Supporting EN-DC with 3.15Gb/s DL and 1.27Gb/s UL in

14nm FinFET CMOS," In'tl Solid-State Circuits Conf. (ISSCC), Feb. 2019.
[2] K. Muhammad, et al., “Verification of Digital RF Processors: RF, Analog, Baseband, and Software,” IEEE J. Solid-State

Circuits, April 2007.
[3] Chan Young Park and Jaeha Kim, "Event-Driven Modeling and Simulation of 5G NR-Band RF Transceiver in

SystemVerilog," Int'l Conf. on Synthesis, Modeling, Analysis and Simulation Methods, and Appl. to Circuit Design
(SMACD), July 2021.

[4] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel.
[5] Charles Dancak, "A UVM SystemVerilog Testbench for Analog/Mixed-Signal Verification: A Digitally-Programmable

Analog Filter Example," Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2021.

