
A UVM SystemVerilog Testbench for 5G/LTE
Multi-Standard RF Transceiver

ByeongKyu Kim and Jaeha Kim

Seoul National University, Seoul, Korea

2 / 24

Contents
• Motivation

• 5G/LTE RF Transceiver Model

• UVM Testbench for AMS Verification

• Simulation Results

• Summary

3 / 24

Motivation
• A 5G/LTE RF transceiver is a complex

analog circuit with 351 operating modes
• 117 frequency bands × 3 modulations

• Thorough verification is needed to avoid:
• Errors in selecting the active blocks
• Errors in routing the signals
• Errors in decoding the control bits

• This work aims to use UVM testbench to
perform such verification

J. Lee, et al., "A Sub-6GHz 5G New Radio RF Transceiver Supporting EN-DC with 3.15Gb/s DL and 1.27Gb/s UL in 14nm FinFET
CMOS,” ISSCC 02/2019.

4 / 24

Modeling RF Transceiver in SystemVerilog

• To use UVM, we need to first model the RF transceiver in SystemVerilog
• Real-number model (RNM) and baseband equivalent model (BBEQ) are

not adequate when simulating RF signals at variable carrier frequencies

LO LO LOLB MHB UHB

Band control
Freq. control

DAC

DAC

DAC

TXBB
I

UCM

UCM

UCM

LB

MHB

UHB

PA

PA

PA

TX_DATA_I

QAM mode
control

BB pole
control

Gain
control

Band
control Band

control

TX_OUT_I
RXBB
I

LB

RX_IN_I

BB pole
control

Gain
control

LNA

LNA

LNA

DCM

DCM

DCM

MHB

UHB

RX_DATA_I
ADC

Band
control Band

control

LO LO LOLB MHB UHB

Band control
Freq. control

C. Y. Park and J. Kim, "Event-Driven Modeling and Simulation of 5G NR-Band RF Transceiver in SystemVerilog," SMACD 07/2021.

5 / 24

Problems with RNM and BBEQ
Real Number Model (RNM)
• Expressing high-frequency RF signals would require many events

triggered at fine time steps, resulting in slow simulation

Baseband Equivalent Model (BBEQ)
• Can reduce the events by assuming a fixed-frequency carrier, but cannot

express RF signals with variable or multiple carrier frequencies

parameter time_step = 10e-12 // time-step size
always @(posedge clk) begin

t = $realtime;
sin_out = amp * $sin(2*`M_PI*freq*t*time_step);

end

Time-step

6 / 24

XMODEL : Efficient Event-Driven Simulation
• Fast and accurate analog/mixed-signal simulation in SystemVerilog by

expressing analog signals using functional expressions
• 𝑥 𝑡 = ∑! 𝑐!𝑡"!#$𝑒#%!&𝑢 𝑡 → 𝑋 𝑠 = ∑!

'!
()%! "!

RNM’s event-points XMODEL’s event-point

parameter time_step = 10e-12 // time-step size
always @(posedge clk) begin

t = $realtime;
sin_out = amp * $sin(2*`M_PI*freq*t*time_step);

end

sin_gen #(.freq(freq)) XP1 (.out(sin_unit));
multiply XP2 (.in(amp, sin_unit), .out(sin_out));

DATA <5:0>

DATA <5:0>

Event Event

Events (1 Event/1 Time-step), Time-step ≈ 1ns

Events (1 Event/1 Time-step), Time-step ≈ 1ps

Conventional (RNM)

Proposed (XMODEL)

Time-step (Event)

DATA <5:0>

DATA <5:0>

Event Event

Events (1 Event/1 Time-step), Time-step ≈ 1ns

Events (1 Event/1 Time-step), Time-step ≈ 1ps

Conventional (RNM)

Proposed (XMODEL)

DATA <5:0>

DATA <5:0>

Event Event

Events (1 Event/1 Time-step), Time-step ≈ 1ns

Events (1 Event/1 Time-step), Time-step ≈ 1ps

Conventional (RNM)

Proposed (XMODEL)

DATA <5:0>

DATA <5:0>

Event Event

Events (1 Event/1 Time-step), Time-step ≈ 1ns

Events (1 Event/1 Time-step), Time-step ≈ 1ps

Conventional (RNM)

Proposed (XMODEL)

Event Event

7 / 24

Modeling RF Transceiver with XMODEL
• Each component of the RF transceiver is modeled by XMODEL primitives

that describe the circuit's functionalities
xreal DAC_out, BB_in, BB_out, MIX_in, MIX_out,

PA_in, PA_out;
// D/A converter
dac #(.num_bit(4))

XP1 (.out(DAC_out), .in(TX_DATA));
switch SW1 (.pos(DAC_out), .neg(BB_in), .ctrl(sel_qam[0]));
// TX baseband (BB) filter
filter_var #(.num_poles(1))

XP2 (.gain(gain), .poles('{pole,0.0}),
.out(BB_out), .in(BB_in));

switch SW2 (.pos(BB_out), .neg(MIX_in), .ctrl(sel_band[0]));
// Up-conversion mixer
multiply #(.num_in(2))

XP3 (.out(MIX_out), .in({net5, MIX_in}));
switch SW3 (.pos(MIX_out), .neg(PA_in), .ctrl(sel_band[0]));
// Power amplifier
multiply #(.num_in(2))

XP4 (.out(PA_out), .in({ctrl_PA_gain, PA_in}));

Transmitter I path

DAC

DAC

DAC

TXBB
I

UCM

UCM

UCM

LB

MHB

UHB

PA

PA

PA

TX_DATA_I

QAM mode
control

BB pole
control

Gain
control

Band
control Band

control

TX_OUT_I

8 / 24

UVM Testbench for Analog/Mixed-Signal DUT
• By encapsulating all the analog instrumentations within a fixture module,

the rest of the testbench can be built using standard UVM components

9 / 24

Fixture Module
• Contains XMODEL primitives for supplying stimuli and measure responses
• Connects to the UVM driver and monitor via SV virtual interfaces

• Proposed fixture module
performs:
• Data generation
• Data check
• Connectivity/control check
• EVM measurement

I_dig
Q_digTX_DATA

10 / 24

Data Generation
• Emulates the OFDM modulator by converting the digital data entering via

DIF to a pair of I/Q digital streams for a single OFDM sub-channel carrier
• Instead of using a full FFT processor

always @(posedge OFDM_clk) begin
I_bit = TX_PKT.TX_DATA[4:0];
Q_bit = TX_PKT.TX_DATA[9:5];
I_mod += I_bit * A_I * cos(2*M_PI*k/N);
Q_mod += Q_bit * A_Q * sin(2*M_PI*k/N);
k++;

if (k == N) begin
I_dig = int'(I_mod / N / LSB);
Q_dig = int'(Q_mod / N / LSB);
k = 0;

end
end

I_dig
Q_digTX_DATA

11 / 24

Data Check
• Checks whether the received signal after de-modulation is within the

expected range given the transmitted data (ideal value ± d)

add primitives compare primitives

1

-1

1

1

inline primitive
// DATA CHECK
module err_check (

input [1:0] bit_I,
input clk,
output err_I

);

bit [1:0] bit_ref;

initial begin
bit_ref <= 2'b01;
err_I <= 1'b0;

end

always @(posedge clk) begin
err_I <= bit_ref - bit_I;end

endmodule

12 / 24

Connectivity Check
• Checks whether the proper LO signal is selected and routed by checking

the carrier frequency of the RF signals

DC offset

Trigger

trig_cross

meas_freq

13 / 24

Connectivity Check (2)

• A set of SV properties and assertion checks perform the connectivity
checks by checking if the carrier frequency of each RF signal is within the
expected range set by the selected band

property LB_I_connection;
@(posedge CALIB)
$rose(CTRL_IN.sel_band_bit == 3'b001) |->

0.4e9 <= LO_LB_I_freq &&
LO_LB_I_freq <= 1.0e9;

endproperty: LB_I_connection

...

always @(posedge CALIB) begin
if (CTRL_IN.sel_band_bit == 3'b001) begin
LB_I: cover property (LB_I_connection);
LB_I_CONN:
assert property (LB_I_connection)
uvm_report_info(“LB I:PASS”, UVM_HIGH);

else
uvm_report_info(“LB I:FAIL”, UVM_LOW);

end
...

end

14 / 24

Control Signal Check
• Check whether the digital control signals are being interpreted correctly
• Each component takes the digital control bits and converts to an analog value

expressing LO frequency, amplifier gain, filter bandwidth, …
• This analog value is tapped and sent to the UVM monitor

sin_funcadd

LOControl signal

dac

15 / 24

Error Vector Magnitude (EVM) Measurement
• Measures the quality of the QAM-modulated, transmitted signal

• Error vector magnitude (EVM) = "!
"
∑#$%"&! 𝐼'((𝑛) + 𝑄'((𝑛) 𝑅𝑒𝑓 ×100%

filtermultiply sample

sin_gen
[LO carrier frequency]

// Calculate EVM
module cal_EVM (

input real I_value,
input real Q_value,
input real Ideal_I,
input real Ideal_Q,
input reg clk,
output real EVM

);

always @(posedge clk) begin
EVM = ((Ideal_I - I_value)**2 +

(Ideal_Q - Q_value)**2)**0.5;
end

endmodule

I_value

Ideal_I

Ideal_Q

Q_value

clk

inline

EVM

16 / 24

QAM Constellation Diagram Measurement
• A Python script plots the QAM constellation diagram after the simulation

import matplotlib.pyplot as plt
from xmulan import mulan, rowml, waveform

filepath = './EVM_results.fsdb'

read data from waveform
row = rowml()
row.readmeas(filepath)
wv1 = waveform(row['%s.%s' % (FIXTURE, I_value)])

compute QAM constellation points
QAM_Imeas, QAM_Qmeas = compute_constellation(wv1)
QAM_Iref, QAM_Qref = compute_ref()

plot graph
plt.scatter(QAM_Imeas, QAM_Qmeas, color='r')
plt.scatter(QAM_Iref, QAM_Qref, color='b')
plt.xlabel('In-phase Amplitude')
plt.ylabel('Quadrature Amplitude')
plt.show()

Python script

QAM
probe_real

EVM_results
.fsdb

waveform file

17 / 24

UVM Components for the Testbench

18 / 24

Sequence and Sequencer Components

• Generates the data and control inputs to be fed to the fixture module
• INIT sequence performs initialization
• DATA sequence generates random data while exercising multiple operating modes

defined in the data package

19 / 24

Scoreboard Component
• Collects all the validation/measurement results and prints a report

Scoreboard
DAC

behavior
model

AXD2

AXM2EVM
Scorecard

Scoreboard table

Control
signal

Data check
Connectivity check

Maximum
EVM

Measure
valueCompare

20 / 24

Subscriber Component for Coverage Check
• Listens to the data/control signals being generated and measures the

coverage for data values, band frequencies, and modulation modes
• Also measures the cross coverages among them (cross1 and cross2)

Coverage Analysis
export

coverpoint TX_DATA
coverpoint band
coverpoint QAM

cross1 band_mode X QAM_mode
cross2 band_mode X QAM_mode X TX_DATA

APD1

21 / 24

Simulation Results: UVM Output Log

22 / 24

Coverage Results
• 100% coverage can be reached more easily by combining the results of

multiple simulations with different seed values

Seed value = 418

Seed value = 911

Merge

23 / 24

QAM Constellation Diagrams

• Worst-case EVM: 2.3% (64-QAM), 1.4% (256-QAM), and 0.7% (1024-QAM)
• Satisfying the 3GPP standard at all bands

64QAM in LTE band 11 256QAM in LTE band 25 1024QAM in LTE band 53

24 / 24

Summary
• This work presented a UVM testbench for verifying a multi-standard RF

transceiver across all of its operating modes
• The RF transceiver is modeled in SystemVerilog using XMODEL primitives
• With the fixture module enclosing all the analog specifics, the UVM components

built for digital verification can be extended to AMS verification as well

• The presented UVM testbench successfully completed the data checks,
connectivity/control checks, and EVM measurements on the 5G/LTE RF
transceiver model over 351 operating modes in 3.3 hours

Thank You

