A UVM SystemVerilog Testbench for 5G/LTE Multi-Standard RF Transceiver

ByeongKyu Kim and Jaeha Kim

Seoul National University, Seoul, Korea
Contents

• Motivation

• 5G/LTE RF Transceiver Model

• UVM Testbench for AMS Verification

• Simulation Results

• Summary
Motivation

• A 5G/LTE RF transceiver is a complex analog circuit with 351 operating modes
 • 117 frequency bands × 3 modulations
• Thorough verification is needed to avoid:
 • Errors in selecting the active blocks
 • Errors in routing the signals
 • Errors in decoding the control bits
• This work aims to use UVM testbench to perform such verification

Modeling RF Transceiver in SystemVerilog

- To use UVM, we need to first model the RF transceiver in SystemVerilog.
- Real-number model (RNM) and baseband equivalent model (BBEQ) are not adequate when simulating RF signals at variable carrier frequencies.

Problems with RNM and BBEQ

Real Number Model (RNM)
• Expressing high-frequency RF signals would require many events triggered at fine time steps, resulting in slow simulation

```verbatim
class SimClass {
  parameter time_step = 10e-12; // time-step size
  always @(posedge clk) begin
    t = $realtime;
    sin_out = amp * $sin(2*pi*freq*t*time_step);
  end
}
```

Baseband Equivalent Model (BBEQ)
• Can reduce the events by assuming a fixed-frequency carrier, but cannot express RF signals with variable or multiple carrier frequencies
XMODEL : Efficient Event-Driven Simulation

- Fast and accurate analog/mixed-signal simulation in SystemVerilog by expressing analog signals using functional expressions
 \[x(t) = \sum_i c_i t^{m_i-1} e^{-a_i t} u(t) \rightarrow X(s) = \sum_i \frac{c_i}{s + a_i}^{m_i} \]

RNMs event-points

XMODEL's event-point

```systemverilog
parameter time_step = 10e-12 // time-step size
always @(posedge clk) begin
  t = $realtime;
  sin_out = amp * $sin(2*M_PI*freq*t*time_step);
end
```

```systemverilog
sin_gen #(freq) XP1 (.out(sin_unit));
multiply XP2 (.in(amp, sin_unit), .out(sin_out));
```
Modeling RF Transceiver with XMODEL

- Each component of the RF transceiver is modeled by XMODEL primitives that describe the circuit's functionalities

```verbatim
xreal   DAC_out, BB_in, BB_out, MIX_in, MIX_out, PA_in, PA_out;
// D/A converter
dac    #(.num_bit(4))
      XP1 (.out(DAC_out), .in(TX_DATA));
switch  SW1 (.pos(DAC_out), .neg(BB_in), .ctrl(sel_qam[0]));
// TX baseband (BB) filter
filter_var #(.num_poles(1))
      XP2 (.gain(gain), .poles('{'pole,0.0}),
            .out(BB_out), .in(BB_in));
switch  SW2 (.pos(BB_out), .neg(MIX_in), .ctrl(sel_band[0]));
// Up-conversion mixer
multiply #(.num_in(2))
      XP3 (.out(MIX_out), .in({net5, MIX_in}));
switch  SW3 (.pos(MIX_out), .neg(PA_in), .ctrl(sel_band[0]));
// Power amplifier
multiply #(.num_in(2))
      XP4 (.out(PA_out), .in({ctrl_PA_gain, PA_in}));
```
UVM Testbench for Analog/Mixed-Signal DUT

- By encapsulating all the analog instrumentations within a fixture module, the rest of the testbench can be built using standard UVM components.
Fixture Module

• Contains XMODEL primitives for supplying stimuli and measure responses
• Connects to the UVM driver and monitor via SV virtual interfaces

• Proposed fixture module performs:
 • Data generation
 • Data check
 • Connectivity/control check
 • EVM measurement
Data Generation

- Emulates the OFDM modulator by converting the digital data entering via DIF to a pair of I/Q digital streams for a single OFDM sub-channel carrier
- Instead of using a full FFT processor

```
always @(posedge OFDM_clk) begin
    I_bit = TX_PKT.TX_DATA[4:0];
    Q_bit = TX_PKT.TX_DATA[9:5];
    I_mod += I_bit * A_I * cos(2*M_PI*k/N);
    Q_mod += Q_bit * A_Q * sin(2*M_PI*k/N);
    k++;
    if (k == N) begin
        I_dig = int(I_mod / N / LSB);
        Q_dig = int(Q_mod / N / LSB);
        k = 0;
    end
end
```
Data Check

• Checks whether the received signal after de-modulation is within the expected range given the transmitted data (ideal value ± δ)

```
// DATA CHECK
module err_check (
    input [1:0] bit_I,
    input clk,
    output err_I
);
bit [1:0] bit_ref;
initial begin
    bit_ref <= 2'b01;
    err_I <= 1'b0;
end
always @(posedge clk) begin
    err_I <= bit_ref - bit_I;
end
endmodule
```
Connectivity Check

• Checks whether the proper LO signal is selected and routed by checking the carrier frequency of the RF signals
A set of SV properties and assertion checks perform the connectivity checks by checking if the carrier frequency of each RF signal is within the expected range set by the selected band.
Control Signal Check

- Check whether the digital control signals are being interpreted correctly
 - Each component takes the digital control bits and converts to an analog value expressing LO frequency, amplifier gain, filter bandwidth, ...
 - This analog value is tapped and sent to the UVM monitor
Error Vector Magnitude (EVM) Measurement

- Measures the quality of the QAM-modulated, transmitted signal

 Error vector magnitude (EVM) = \(\sqrt{\frac{1}{N} \sum_{n=0}^{N-1} I_{err}[n]^2 + Q_{err}[n]^2 / Ref \times 100\%} \)

```verilog
module cal_EVM (
  input real I_value,
  input real Q_value,
  input real Ideal_I,
  input real Ideal_Q,
  input reg clk,
  output real EVM
);

always @(posedge clk) begin
  EVM = ((Ideal_I - I_value)**2 + (Ideal_Q - Q_value)**2)**0.5;
end
endmodule
```
QAM Constellation Diagram Measurement

• A Python script plots the QAM constellation diagram after the simulation

```python
import matplotlib.pyplot as plt
from xmulan import mulan, rowml, waveform

filepath = './EVM_results.fsdb'

# read data from waveform
row = rowml()
row.readmeas(filepath)
wv1 = waveform(row['%s.%s' % (FIXTURE, I_value)])

# compute QAM constellation points
QAM_Imeas, QAM_Qmeas = compute_constellation(wv1)
QAM_Iref, QAM_Qref = compute_ref()

# plot graph
plt.scatter(QAM_Imeas, QAM_Qmeas, color='r')
plt.scatter(QAM_Iref, QAM_Qref, color='b')
plt.xlabel('In-phase Amplitude')
plt.ylabel('Quadrature Amplitude')
plt.show()
```
UVM Components for the Testbench
Sequence and Sequencer Components

• Generates the data and control inputs to be fed to the fixture module
 • INIT sequence performs initialization
 • DATA sequence generates random data while exercising multiple operating modes defined in the data package
Scoreboard Component

• Collects all the validation/measurement results and prints a report
Subscriber Component for Coverage Check

- Listens to the data/control signals being generated and measures the coverage for data values, band frequencies, and modulation modes
 - Also measures the cross coverages among them (cross1 and cross2)

Coverage

- coverpoint TX_DATA
- coverpoint band
- coverpoint QAM
- cross1 band_mode X QAM_mode
- cross2 band_mode X QAM_mode X TX_DATA

Analysis

export

APD1
Simulation Results: UVM Output Log

<table>
<thead>
<tr>
<th>BAND</th>
<th>BAND</th>
<th>QAM</th>
<th>I/Q</th>
<th>I</th>
<th>Q</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>MODE</td>
<td>P/F</td>
<td>O/X</td>
<td>O/X</td>
<td>EVM</td>
<td></td>
</tr>
<tr>
<td>N46</td>
<td>UHBM</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.482522</td>
</tr>
<tr>
<td>LTE_BAND2</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.844680</td>
</tr>
<tr>
<td>N79</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.898446</td>
</tr>
<tr>
<td>LTE_BAND19</td>
<td>LB</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.482271</td>
</tr>
<tr>
<td>N24</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.961091</td>
</tr>
<tr>
<td>N40</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>2.151381</td>
</tr>
<tr>
<td>N70</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.057623</td>
</tr>
<tr>
<td>N26</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.926195</td>
</tr>
<tr>
<td>N5</td>
<td>LB</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.476259</td>
</tr>
<tr>
<td>N84</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.93086</td>
</tr>
<tr>
<td>N76</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.923541</td>
</tr>
<tr>
<td>N40</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>2.068640</td>
</tr>
<tr>
<td>N53</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.939791</td>
</tr>
<tr>
<td>N92H</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.107136</td>
</tr>
<tr>
<td>LTE_BAND2</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.976312</td>
</tr>
<tr>
<td>LTE_BAND39</td>
<td>LB</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.576720</td>
</tr>
<tr>
<td>N85</td>
<td>LB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.837291</td>
</tr>
<tr>
<td>N86</td>
<td>MHB</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.472347</td>
</tr>
<tr>
<td>N47</td>
<td>UHBM</td>
<td>QAM_1824</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.483332</td>
</tr>
<tr>
<td>LTE_BAND5</td>
<td>LB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>2.462184</td>
</tr>
<tr>
<td>N91_L</td>
<td>LB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.907785</td>
</tr>
<tr>
<td>N102</td>
<td>UHBM</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.138394</td>
</tr>
<tr>
<td>LTE_BAND9</td>
<td>MHB</td>
<td>QAM_64</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>1.147657</td>
</tr>
<tr>
<td>N86</td>
<td>MHB</td>
<td>QAM_256</td>
<td>PASS</td>
<td>0</td>
<td>0</td>
<td>0.846882</td>
</tr>
</tbody>
</table>

--- COVERAGE STATISTICS ---
- Band QAM 64 Coverage: 100.00000%
- Band QAM 256 Coverage: 100.00000%
- Band QAM 1024 Coverage: 100.00000%
- Data QAM 64 Coverage: 94.87180%
- Data QAM 256 Coverage: 94.83841%
- Data QAM 1024 Coverage: 95.63455%
Coverage Results

• 100% coverage can be reached more easily by combining the results of multiple simulations with different seed values

---COVERAGE STATISTICS---

<table>
<thead>
<tr>
<th>BAND</th>
<th>QAM</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>64</td>
<td>100.00000%</td>
</tr>
<tr>
<td>BAND</td>
<td>256</td>
<td>100.00000%</td>
</tr>
<tr>
<td>BAND</td>
<td>1024</td>
<td>100.00000%</td>
</tr>
<tr>
<td>DATA</td>
<td>64</td>
<td>94.87180%</td>
</tr>
<tr>
<td>DATA</td>
<td>256</td>
<td>94.83841%</td>
</tr>
<tr>
<td>DATA</td>
<td>1024</td>
<td>95.03455%</td>
</tr>
</tbody>
</table>

Seed value = 418

---COVERAGE STATISTICS---

<table>
<thead>
<tr>
<th>BAND</th>
<th>QAM</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>64</td>
<td>100.00000%</td>
</tr>
<tr>
<td>BAND</td>
<td>256</td>
<td>100.00000%</td>
</tr>
<tr>
<td>BAND</td>
<td>1024</td>
<td>100.00000%</td>
</tr>
<tr>
<td>DATA</td>
<td>64</td>
<td>94.61806%</td>
</tr>
<tr>
<td>DATA</td>
<td>256</td>
<td>95.01870%</td>
</tr>
<tr>
<td>DATA</td>
<td>1024</td>
<td>95.03575%</td>
</tr>
</tbody>
</table>

Seed value = 911

Crosses for Group RF_COV_PKG::COVERAGE::CVG

<table>
<thead>
<tr>
<th>CROSS</th>
<th>EXPECTED</th>
<th>UNCOVERED</th>
<th>COVERED</th>
<th>PERCENT</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross_64</td>
<td>117</td>
<td>0</td>
<td>117</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td>cross_256</td>
<td>117</td>
<td>0</td>
<td>117</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td>cross_1024</td>
<td>117</td>
<td>0</td>
<td>117</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td>cross_64_tx</td>
<td>7488</td>
<td>0</td>
<td>7488</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td>cross_256_tx</td>
<td>29952</td>
<td>0</td>
<td>29952</td>
<td>100.00</td>
<td>100</td>
</tr>
<tr>
<td>cross_1024_tx</td>
<td>119808</td>
<td>0</td>
<td>119808</td>
<td>100.00</td>
<td>100</td>
</tr>
</tbody>
</table>
QAM Constellation Diagrams

- Worst-case EVM: 2.3% (64-QAM), 1.4% (256-QAM), and 0.7% (1024-QAM)
- Satisfying the 3GPP standard at all bands

64QAM in LTE band 11

256QAM in LTE band 25

1024QAM in LTE band 53
Summary

• This work presented a UVM testbench for verifying a multi-standard RF transceiver across all of its operating modes
 • The RF transceiver is modeled in SystemVerilog using XMODEL primitives
 • With the fixture module enclosing all the analog specifics, the UVM components built for digital verification can be extended to AMS verification as well

• The presented UVM testbench successfully completed the data checks, connectivity/control checks, and EVM measurements on the 5G/LTE RF transceiver model over 351 operating modes in 3.3 hours
Thank You