
Automate Interrupt Checking with UVM Macros
and Python

Guide With Code Examples

Aleksandra Dimanic, Vtool Ltd, Belgrade, Serbia (aleksandrad@thevtool.com)

Nemanja Stevanovic, Vtool Ltd, Belgrade, Serbia (nemanjas@thevtool.com)

Yoav Furman, Chain Reaction Ltd., Yokneam, Israel (yoavf@chain-reaction.io)

Itay Henigsberg, Chain Reaction Ltd., Yokneam, Israel (itayh@chain-reaction.io)

Abstract—This paper will present a macro based system for verifying interrupts. The main goal is to create a
reusable and automated system which can later be generated using Python scripts.

Keywords—verification, interrupts, reusable, python

I. INTRODUCTION

Interrupts are an essential part of every design, and must be thoroughly tested to make sure that the device
can recover from unexpected failures, or that it can properly handle asynchronous events which are in some
way important for the system. The main goal of this paper is to help verification engineers create a more
general and reusable way of checking the interrupts, and to automate parts of the process using Python
scripting in order to save time and effort. This approach can help companies to standardize and set up
methodology for verifying interrupt functionality.

The method described in this paper has been used in an ongoing project with Chain Reaction Ltd, alongside
Vtool Ltd (design and verification service company). The person reading this paper should be familiar with the
verification methodologies and SystemVerilog in order to understand the provided solutions and code
examples.

II. INTERRUPT OVERVIEW

All systems share the same common ground for IRQ (interrupt) handling. An interrupt is triggered by the
design, according to the system specification. When the condition for the interrupt is satisfied, it is reflected in
appropriate status registers. Aggregating the IRQ to software or interrupt handler takes into account
mask/unmask/set/reset registers. After getting an IRQ request, the system needs to take specific steps in order
to get back to normal mode of operation. This is unique for each interrupt and is out of scope of this paper.

Interrupts are usually grouped in blocks in design, meaning they share common paths in RTL
(register-transfer level). They also share common behavior - when there is an interrupt trigger, send an interrupt
request. The idea is to take those common parts, and create a general checker in order to save time and effort.

This paper will cover handling and checking the interrupt trigger via a dedicated interface, as well as
status and control registers using macros. The focus is on an automatic way of generating code for checking
interrupts using Python scripts, according to the main building blocks of code.

III. EXPLAINING THE CONCEPT

Each interrupt has its corresponding register or a field in the register. A group of interrupts is mapped in the
ISR (Interrupt Status Register) register, where each field correlates to a specific interrupt handler. Reading from

1

mailto:stefans@veriests.com
mailto:nemanjas@thevtool.com
mailto:yoavf@chain-reaction.io
mailto:nemanjas@thevtool.com

status registers can be done at any point while the system is active, meaning that the registers always have to
reflect the correct values of the IRQs.

Figure 1: Interrupt registers example

More often than not, verification is not completely in sync with the RTL, meaning that sometimes we know
what behavior to expect from the RTL before it actually happens, and sometimes we know what to do only
after it happens. In order to avoid mismatches in RTL and verification, and to avoid dependencies between
checkers and register prediction, we can create a general task which will always do the register prediction for
us, based on the interrupt trigger coming from the design. The general predict mechanism can be used to check
the aggregation of the interrupt, and can be fully automatic, but in order to completely verify the proper
functionality of IRQs, it is also necessary to check the trigger coming from the design.

We need to make sure that the RTL functions properly, meaning checking must be done in both directions.
The verification’s expectations and RTL behavior must match, i.e. the interrupt trigger has to occur and also be
expected. If the trigger was expected in verification and didn’t happen in RTL, or if it happened in RTL and it
wasn’t expected in verification, then that behavior is not correct and either there is a bug, or verification needs
to be fixed. This is where the previously mentioned interrupt trigger checking interface comes into play. Said
interface is configurable, and can detect interrupt triggers, and compare them with verification expectations
coming from the reference model (which are out of scope of this paper, as each interrupt is specific). The
interface is applicable to all interrupt triggers, both edge and level triggered.

2

IV. EXPLAINING THE FLOW OF INTERRUPT VERIFICATION

Figure 2: Interrupt verification flow

In order to make the code more uniform first we need to create a new interface to which all relevant IRQ
signals will be connected. The interface is called int_vif in this paper. All the IRQ triggers coming from the
design are connected to a signal in int_vif called int_event_trigger. The triggers must be connected in the same
order as they are mapped in the status registers.

In the reference model, called ref_model, there is an auto_predict() task. In this task automatic prediction of
status registers is performed based on the irq_evnt_trigger signals from int_vif.

Inside the int_vif there is another interface, which is used to check the IRQ triggers, called irq_checking_vif.
One instance of this interface will check only one trigger. The RTL trigger is connected to a signal called
rtl_trigger. Once the trigger is detected, the checking begins. The requirement of this interface is for the
verification event to be triggered first, so as soon as rtl_trigger happens, the interface will first check if the
verif_evnt was already expected and if it wasn’t, the interface will indicate an error.

From the verification side, there is an verif_evnt event which needs to be triggered from the ref_model.
Triggering of this signal is specific for each interrupt, and is out of scope of this paper. Once the verif_evnt is
triggered a verification timer will start. If the timer expires without the rtl_trigger happening, the interface will
indicate an error. If the rtl_trigger happens before the timer expires, it means that the interrupt trigger is
behaving properly, and that it was both expected and occurred. If one of the two errors happens, then that
means that there is an issue either in the design or in verification.

A. Handling status and control registers
Considering the flow described in section IV (four) and that the same logic is applied to each interrupt, let’s

take a look at a macro which will do the automatic prediction in the reference model.

`define IRQ_AUTO_PREDICT(isr_reg_name, isr_field, irq_reg_name, irq_field, reg_mask_name,
reg_mask)\

forever begin\

int position = reg_model.IRQ_BLOCK.irq_reg_name.irq_event.get_lsb_pos();\

@(posedge int_vif.int_event_trigger[position]);\

3

if(!reg_model.IRQ_BLOCK.reg_mask_name.reg_mask.get_mirrored_value()) begin\

`uvm_info(get_full_name(), $sformatf("Predicting ISR reg due to %s",
reg_model.IRQ_BLOCK.irq_reg_name.irq_event.get_name()), UVM_HIGH)\

assert(reg_model.IRQ_BLOCK.isr_reg_name.isr_field.predict(.value(1)));\

assert(reg_model.IRQ_BLOCK.irq_reg_name.irq_event.predict(.value(1)));\

end\

end\

** Note: In this example the IRQ is masked if the value of the masking register is one.

The task will detect every rising edge of the interrupt trigger and predict the register values while taking
into consideration the masking register. One can notice that the above code can be applied to each interrupt, we
just need to pass the proper arguments to the macro.

This prediction is taking 9 lines of code. If for example, a system has 20 different interrupts, without using
the macro those 9 lines just became 180. By using the macro we are optimizing the code by avoiding
unnecessary duplication. Looking at the register example from figure 1, the auto_predict() task will look like
this:

task auto_predict();

fork

//IRQ_REG_A

`IRQ_AUTO_PREDICT(ISR, isr_A, IRQ_REG_A, int0, IRQ_MASK_A, mask0)

. . .

`IRQ_AUTO_PREDICT(ISR, isr_A, IRQ_REG_A, int31, IRQ_MASK_A, mask31)

//IRQ_REG_B

`IRQ_AUTO_PREDICT(ISR, isr_B, IRQ_REG_B, int0, IRQ_MASK_B, mask0)

. . .

`IRQ_AUTO_PREDICT(ISR, isr_B, IRQ_REG_B, int31, IRQ_MASK_B, mask31)

join_none

endtask

A certain system can have some additional specific behaviors for the interrupts, and by following the same
logic more macros can be added.

By using a general task, we can centralize the checking in one location and create an independent
standardized mechanism, which will make the debug and implementation process easier, faster and reusable on
the same project, but also on company level.

4

B. How does the irq_checking_vif work?
As mentioned one instance of this interface will check one interrupt trigger. Let’s look at the flow of

checking in one instance of this interface.

Figure 3: Interrupt checking interface flow diagram

The requirement in this interface is to trigger the verification event before it happens in RTL, and because
design and verification are not always in sync, rtl_trigger sometimes needs to be delayed. This is why the
rtl_trigger is continuously sampled and its value is stored in a queue of configurable size called
rtl_trigger_q[$]. Size of this queue is configured from the reference model, by calling a task rtl_trigger_delay.

task rtl_trigger_delay(int size);

if (size == 0) `uvm_error(“%m”, “Size cannot be zero”)

5

repeat(size) rtl_trigger_q.push_back(0);

endtask

Sampling and delaying is done in an always block which looks like this:

always @(posedge clk) begin

void’(rtl_trigger_q.pop_front());

void’(rtl_trigger_q.push_back(rtl_trigger));

end

The actual value of the rtl_trigger is always stored in the last position in the queue, and everything is being
shifted one position to the left. After rtl_trigger_q[0] changes from 0 to 1, a new task is called where the
occurrence of verif_evnt is checked by checking the status of queue timer_val_q. If the verif_evnt was not
triggered, the interface will indicate an error saying that the RTL event happened without it being expected. If
the verif_evnt was already expected then the value of timer_val_q[0] will be set to -1.

always @(posedge clk) //for pulses __|**|__

if (evnt_is_pulse && rtl_trigger_q[0])

check_if_evnt_expected();

always @(posedge rtl_trigger_q[0] iff !evnt_is_pulse) //for level __|******

check_if_evnt_expected();

function void check_if_evnt_expected();

`uvm_info($sformatf("%m"), "rtl event triggered", UVM_HIGH)

if (en_check)

if (timer_val_q.size > 0) timer_val_q[0] = -1;

else `uvm_error($sformatf("%m"), "RTL event occurred without it being expected.")

endfunction

Looking at the verification side, after verif_event is triggered from the reference model to indicate that an
interrupt is expected, a task which monitors the status of timer_val_q begins. If timer_val_q[0] reaches
verif_timer_duration without the RTL event happening, the interface indicates an error saying that the event
was expected but never occurred. If the RTL event happened, then the timer_val_q[0] is already set to -1 and
the interrupt is both expected and occurred, meaning that it is functioning correctly.

always @(verif_evnt)

if (en_check && (evnt_is_pulse || rtl_trigger_q[0] === 0)) begin

if(!timer_val_q.size()) timer_val_q.push_back(0);

else `uvm_error($sformatf("%m"), “verif event expected more than once”)

`uvm_info($sformatf("%m"), "verif event triggered", UVM_HIGH)

if (timer_val_q.size == 1)

fork

check_expected_ev_happens(); //check if rtl signal happens

join_none

end

task check_expected_ev_happens();

while (timer_val_q.size > 0) begin

6

@(posedge clk);

if (timer_val_q[0] == -1) begin

void'(timer_val_q.pop_front());

`uvm_info($sformatf("%m"), "RTL event expected and occured.", UVM_HIGH)

end

if (timer_val_q[0] == verif_timer_duration) begin

void'(timer_val_q.pop_front());

`uvm_error($sformatf("%m"), "RTL event didn't occur although expected in verification.")

end else

timer_val_q[0] += 1;

end // while

endtask // check_expect_happens

In conclusion, the interface is doing the checking in both directions and making sure that the interrupt
trigger is both expected and that it actually happened. There are more additional options that can be added, for
example: stopping the checking, ignoring the trigger, checking x/z events on the rtl_trigger, etc. The interface
allows us to test the interrupts without writing unnecessary code, and to do the checking in a more precise way
because the detection window is smaller.

V. AUTOMATING EVERYTHING USING PYTHON

Python is a powerful tool which can help engineers speed up the verification process. In this case, a gui
based script has been used to automatically generate parts of code based on user input. Let’s look at the script
output using the example registers shown in figure 4.

Figure 4: ISR and status register example

After starting the script the user needs to specify the number of fields in one IRQ status register. For register
IRQ_A this means inputting number three. A window pops up (figure 5), where the user can input the name of
the status register (IRQ_A), the names of fields in the status register (int0, int1, int2), the name of the masking
register (MASK_A) and its fields (m0, m1, m2), the name of the ISR register (ISR_REG) and the name of the
field mapped in the ISR register (isr_A). By clicking generate, the needed code for register IRQ_A is stored in a
text file, and after that the user can either close the app or repeat the process for a different register. For the
given example the user needs to apply the same logic for IRQ_B. The user can also choose if an instance of the
irq_checking_vif is needed for each interrupt trigger.

After generating the code for all registers, the script can be closed and all the code can be found in a single
text file (figure 6). The user still needs to take the code and move it to proper locations in the verification
environment.

7

Figure 5: Gui script user interface

fork

`IRQ_AUTO_PREDICT(ISR_REG, isr_A, IRQ_A, int0, MASK_A, m0) //IRQ_A

`IRQ_AUTO_PREDICT(ISR_REG, isr_A, IRQ_A, int1, MASK_A, m1) //IRQ_A

`IRQ_AUTO_PREDICT(ISR_REG, isr_A, IRQ_A, int2, MASK_A, m2) //IRQ_A

`IRQ_AUTO_PREDICT(ISR_REG, isr_B, IRQ_B, int3, MASK_B, m3) //IRQ_B

`IRQ_AUTO_PREDICT(ISR_REG, isr_B, IRQ_B, int4, MASK_B, m4) //IRQ_B

join_none

irq_checking_vif trigger_check_IRQ_A_int0;

irq_checking_vif trigger_check_IRQ_A_int1;

irq_checking_vif trigger_check_IRQ_A_int2;

irq_checking_vif trigger_check_IRQ_B_int3;

irq_checking_vif trigger_check_IRQ_B_int4;

Figure 6: Script output (.txt file)

VI. RESULTS

This method of checking the interrupts has proven effective according to empirical evidence gathered while
working on a project with Chain Reaction, with the goal of standardizing the interrupt checking in this and all
future projects. The solutions provided in this paper have increased code reusability and decreased the time
needed in order to fully verify the interrupts in the SystemVerilog environment. Depending on specific needs of
the company or a project, the Python script can be further expanded, or adapted, as well as the macros and the
trigger checking interface.

VII. CONCLUSIONS

Speeding up the verification process is one of the main goals of verification engineers. This paper
introduced a standardized method for checking the interrupts and is showing how verification time can be
reduced, optimized and partially automated. Presented methodology can increase the quality of any verification
environment by improving readability, robustness and reusability. It gives a different perspective, and offers
verification engineers one possible solution to overcome some common challenges and problems.

8

