
Automated Configuration of System Level C-Based CPU Testbench in
Modern SoCs : A Novel Framework

Ruchi Misra, Chetan Kulkarni, Alok Kumar, Garima Srivastava,

YoungSik Kim, Seonil Brian Choi

Agenda

• Introduction

• Motivation

• A Typical Test-Bench Architecture

• Methodology

• Example Applications

• Results

• Conclusion

• Future Work

• Acknowledgement

Introduction

➢Design and Complexity continues to increase for chipsets.

➢Simulation Time has increased dramatically at SoC level from minutes and
hours to days and weeks.

➢This puts a lot of pressure on the methodology which we use to bring up our
SoC environment.

➢When the testing environment has real CPU RTL, the configuration sequences
have to be coded in C.

➢In order to bring up this C based environment for every design drop, there is a
significant manual effort involved.

➢Lets see two approaches to automate this process of coding or conversion of
SV based sequences/specifications to C-based ones which enabled us to
speed-up the functional verification closure in complex SoCs.

Motivation

• Verification of the SoC along with real RTL such as CPU, the input initialization
sequences like clock/reset/boot sequence must be in assembly language or C-
programming language.

• Bring-up of C based testbench environment which includes manual coding or
conversion of some of the design initialization sequences to C.

• Manual coding of these C based design sequences introduces the possibility of
errors and is also very time consuming.

• Opportunity to speed-up the C-based testbench environment bring-up and to
eliminate the manual conversion of C files.

A Typical Test-Bench Architecture

Test Scenario

Sequence

Register Model

Virtual Sequencer

Reg2AXI Adapter

Register Predictor

AXI Bus VIP TBTB

AXI Interface TB Interface TB Interface

DUT

• The SoC consists of various blocks
such as CPU, clock generator and
controller, power controller, memory
unit, USB etc.

• All blocks are connected using AMBA
bus protocols such as AXI, CHI, APB.

• The AXI Bus VIP connects to the DUT
through AXI interface which is driven
by UVM sequencers.

• Verification engineers use Register
models to ease the stimulus
generation and functional checking.

SV and C Based Testbenches

• UVM offers power of randomization and
constraints naturally, but verification teams
have needs to create or reuse C programs also.

• C tests range from RTL simulation to hardware-
software co-simulation to full system
validation.

• These C programs may generate stimulus,
check golden results and collect statistical data.

• C source files after going through assembler
and compiler, dump object files.

• Linker creates executable files which
sometimes takes library files also and finally
generates hex files that is processed by cores. Figure 2: Files used in C based SoC TB

Parallel Existence of SV and C based Test-Benches

• The SV testcase gives the control to C code and
receives back the control before declaring test
pass or fail.

• The stimulus is provided to the DUT through the
C test which gets compiled and converted to
assembly level.

• The parallel coding of SV and C based sequences
is done progressively for every RTL release
manually during the verification cycle.

• Lets see two different approaches of automating
the code or creation of these C files using the
proposed Perl based framework.

C-Code

DUT

Processor
Thread

Test Case
(SV)

Thread
(SV)

Test Pass/Fail

Virtual
communication b/w

the threads

Simulation

Connecting SV/UVM and C Worlds Together

• Using SystemVerilog DPI-C is one way

• But using DPI-C can sometimes be hard, slow and the DPI code has a close connection to a
“scope” which can be a module instance, an interface instance, or the global root scope.

• Hence parallel coding of SV and C based sequences is done progressively for every RTL release
manually during the verification cycle.

• Even though there is a lot of thought going in the industry in the direction of automating
handwritten tests, it is a reality that still verification engineers are relying on legacy C code for
many projects.

• C based testbenches need only one-time set-up effort, are more reliable and provide better
coverage. Given the scope of derivative projects in current VLSI industry, it is certain that the C
based testbenches and directed or manually created C based sequences are not going away
anytime soon.

Methodology

• Initial Conversion (Spec Based)
❖when the first version of design is released.
❖we convert the complete boot/clock/reset

sequence as per the specification into C-
language.

❖convert all the tasks, function calls, class
methods, conditions and all the methods of
RAL model used such as register write, read,
set-get methods etc and replicate the same
code behavior in C-language.

• Incremental Conversion (SV sequence based)
❖conversion is only performed when there is

an update in design specification or the
corresponding SV-file.

❖This update is converted in C-language syntax
and added in proper position in C-file.

SV C

//initialize all clocks

class initialise clocks(){

clk1,

clk2,

.

.

clkn

}

//initialize all clocks

void initialise clocks(){

clk1,

clk2,

.

.

clkn

}

// register writes and reads using RAL

methods

register_1.set(1);//sets value as 1

a=register_2.get()//reads register

register_1.write(1);//sets value as 1

a=register_2.read()//reads register

// methods to write and read in C-

format

write_register() method to write to any

register in the DUT.

read_register() method to read from

any register in the DUT.

Example Application : Automated Boot Sequence

• When the external reset of the chip is released, all the clocks
and resets and memory are initialized.

• CPU reset gets released, and CPU starts fetching instruction
from first location of the memory.

• Resets of other blocks is released and powered up based on the
sequence provided to CPU.

• The Proposed framework converts all these sequences such as
clock initialization, reset initialization etc into C-language.

Stop

External chip reset release

Clock Initialization

Reset Initialization

CPU reset release

All Blocks reset release

Start

Example Application : Register Updates

• Another typical use-case of this tool script is to
convert the register access code of SV to C.

• Two ways of accessing design registers in a
verification environment: Frontdoor and Backdoor.

• Front door is by using the design register bus. This
consumes cycles and follows the register bus
protocol. Backdoor is a zero-simulation time access
by mapping to the design register directly using the
HDL path and allows quick configuration of registers.

• these front door and backdoor accesses are very
common in C based testbench and are often needed
to be manually added by user every design label
which can be easily done by the proposed tool.

SV C

//initialize all clocks

class initialise clocks(){

clk1,

clk2,

.

.

clkn

}

//initialize all clocks

void initialise clocks(){

clk1,

clk2,

.

.

clkn

}

// register writes and reads using

RAL methods

register_1.set(1);//sets value as 1

a=register_2.get()//reads register

register_1.write(1);//sets value as

1

a=register_2.read()//reads register

// methods to write and read in C-

format

write_register() method to write to

any register in the DUT.

read_register() method to read

from any register in the DUT.

Common Challenges

• We can see here SV and C based Data types and most commonly
used SV types which are directly compatible with the C types.

• There are System Verilog-specific types, including packed types
(arrays, structures, unions), 2-state or 4-state, which have no
natural correspondence in C. For these the designers can choose the
layout and representation that best suits their simulation
performance.

• The framework should be able to handle such tricky issues like
defines or includes in SV and C and different data-types in SV or C
for example.

• Synchronization of events in C is another challenge.

• Converting the print statements from SV to C should be handled.

Figure 6 : Comparison between SV and C Data Types

Results

• The Bar graph compares the number of days taken to do the
C coding or conversion with and without using the proposed
framework and highlights the efficiency of the tool.

• Reduces the manual effort of C code change based on design
changes, by approximately 1 day per week, in turn saving 52
days in a year.

• The tool was piloted for a live project during the course of 8-
10 months.

• Eliminates the possibility of unnecessary debugs resulting
due to error-prone coding or conversion of C code arising
due to spec change.

• Recommended for future generation of derivative projects
with incremental updates.

Figure 7: Comparison of efforts with and without the Automation

Conclusion

• Despite its relatively high level of abstraction, RTL simulation is a very time-consuming process,
often requiring nightly or week-long regression runs.

• The paper describes the basic idea of the framework through a pilot done on the initialization
sequences used in boot flow and provides some initial experimental results showing its
effectiveness in improving RTL simulation performance in an automated way.

• Removes the need to perform manual conversion or coding of C sequences of CPU system level
testbench which is prone to human error as well as time consuming.

Future Potential

• Power Aware simulations

• UPF (Unified Power Format) based enablement

• DFD (Design for Debug) environment bring-up

• Emulation environment bring-up

• The framework has the potential to scale-up to become a completely design spec-based sequence
generator which would help in multiple dimensions of the SoC testing.

Acknowledgement

Clock 1 Clock 4Clock 3Clock 2

The authors would like to thank Samsung Semiconductors India Research for enabling the work
mentioned in this paper. We would also like to thank DVCon Europe team for giving us the
opportunity to participate in the conference and present our work.

