
Automated Configuration of System Level C-Based CPU Testbench in 
Modern SoCs : A Novel Framework

Ruchi Misra, Chetan Kulkarni, Alok Kumar, Garima Srivastava,

YoungSik Kim, Seonil Brian Choi



Agenda

• Introduction

• Motivation

• A Typical Test-Bench Architecture

• Methodology

• Example Applications

• Results

• Conclusion

• Future Work

• Acknowledgement



Introduction

➢Design and Complexity continues to increase for chipsets.

➢Simulation Time has increased dramatically at SoC level from minutes and 
hours to days and weeks.

➢This puts a lot of pressure on the methodology which we use to bring up our 
SoC environment.

➢When the testing environment has real CPU RTL, the configuration sequences 
have to be coded in C. 

➢In order to bring up this C based environment for every design drop, there is a 
significant manual effort involved.

➢Lets see two approaches to automate this process of coding or conversion of 
SV based sequences/specifications to C-based ones which enabled us to 
speed-up the functional verification closure in complex SoCs. 



Motivation

• Verification of the SoC along with real RTL such as CPU, the input initialization 
sequences like clock/reset/boot sequence must be in assembly language or C-
programming language. 

• Bring-up of C based testbench environment which includes manual coding or 
conversion of some of the design initialization sequences to C. 

• Manual coding of these C based design sequences introduces the possibility of 
errors and is also very time consuming. 

• Opportunity to speed-up the C-based testbench environment bring-up and to 
eliminate the manual conversion of C files.



A Typical Test-Bench Architecture
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• The SoC consists of various blocks 
such as CPU, clock generator and 
controller, power controller, memory 
unit, USB etc. 

• All blocks are connected using AMBA 
bus protocols such as AXI, CHI, APB. 

• The AXI Bus VIP connects to the DUT 
through AXI interface which is driven 
by UVM sequencers. 

• Verification engineers use Register 
models to ease the stimulus 
generation and functional checking. 



SV and C Based Testbenches

• UVM offers power of randomization and 
constraints naturally, but verification teams 
have needs to create or reuse C programs also.

• C tests range from RTL simulation to hardware-
software co-simulation to full system 
validation.  

• These C programs may generate stimulus, 
check golden results and collect statistical data. 

• C source files after going through assembler 
and compiler, dump object files. 

• Linker creates executable files which 
sometimes takes library files also and finally 
generates hex files that is processed by cores. Figure 2: Files used in C based SoC TB



Parallel Existence of SV and C based Test-Benches

• The SV testcase gives the control to C code and 
receives back the control before declaring test 
pass or fail.

• The stimulus is provided to the DUT through the 
C test which gets compiled and converted to 
assembly level. 

• The parallel coding of SV and C based sequences 
is done progressively for every RTL release 
manually during the verification cycle. 

• Lets see two different approaches of automating 
the code or creation of these C files using the 
proposed Perl based framework.
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Connecting SV/UVM and C Worlds Together

• Using SystemVerilog DPI-C is one way

• But using DPI-C can sometimes be hard, slow and the DPI code has a close connection to a 
“scope” which can be a module instance, an interface instance, or the global root scope. 

• Hence parallel coding of SV and C based sequences is done progressively for every RTL release 
manually during the verification cycle. 

• Even though there is a lot of thought going in the industry in the direction of automating 
handwritten tests, it is a reality that still verification engineers are relying on legacy C code for 
many projects. 

• C based testbenches need only one-time set-up effort, are more reliable and provide better 
coverage. Given the scope of derivative projects in current VLSI industry, it is certain that the C 
based testbenches and directed or manually created C based sequences are not going away 
anytime soon. 



Methodology

• Initial Conversion (Spec Based)
❖when the first version of design is released.
❖we convert the complete boot/clock/reset     

sequence as per the specification into C-
language. 

❖convert all the tasks, function calls, class 
methods, conditions and all the methods of 
RAL model used such as register write, read, 
set-get methods etc and replicate the same 
code behavior in C-language.

• Incremental Conversion (SV sequence based)
❖conversion is only performed when there is 

an update in design specification or the 
corresponding SV-file.

❖This update is converted in C-language syntax 
and added in proper position in C-file. 

SV C

//initialize all clocks

class initialise clocks(){

clk1,

clk2,

.

.

clkn

}

//initialize all clocks

void initialise clocks(){

clk1,

clk2,

.

.

clkn

}

// register writes and reads using RAL 

methods

register_1.set(1);//sets value as 1

a=register_2.get()//reads register

register_1.write(1);//sets value as 1

a=register_2.read()//reads register

// methods to write and read in C-

format

write_register() method to write to any 

register in the DUT.

read_register() method to read from 

any register in the DUT.



Example Application : Automated Boot Sequence

• When the external reset of the chip is released, all the clocks 
and resets and memory are initialized. 

• CPU reset gets released, and CPU starts fetching instruction 
from first location of the memory.

• Resets of other blocks is released and powered up based on the 
sequence provided to CPU. 

• The Proposed framework converts all these sequences such as 
clock initialization, reset initialization etc into C-language. 
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Example Application : Register Updates

• Another typical use-case of this tool script is to 
convert the register access code of SV to C. 

• Two ways of accessing design registers in a 
verification environment: Frontdoor and Backdoor.

• Front door is by using the design register bus. This 
consumes cycles and follows the register bus 
protocol. Backdoor is a zero-simulation time access 
by mapping to the design register directly using the 
HDL path and allows quick configuration of registers.

• these front door and backdoor accesses are very 
common in C based testbench and are often needed 
to be manually added by user every design label 
which can be easily done by the proposed tool.

SV C

//initialize all clocks

class initialise clocks(){

clk1,

clk2,

.

.

clkn

}

//initialize all clocks

void initialise clocks(){

clk1,

clk2,

.

.

clkn

}

// register writes and reads using 

RAL methods

register_1.set(1);//sets value as 1

a=register_2.get()//reads register

register_1.write(1);//sets value as 

1

a=register_2.read()//reads register

// methods to write and read in C-

format

write_register() method to write to 

any register in the DUT.

read_register() method to read 

from any register in the DUT.



Common Challenges

• We can see here SV and C based Data types and most commonly 
used SV types which are directly compatible with the C types.

• There are System Verilog-specific types, including packed types 
(arrays, structures, unions), 2-state or 4-state, which have no 
natural correspondence in C. For these the designers can choose the 
layout and representation that best suits their simulation 
performance.

• The framework should be able to handle such tricky issues like 
defines or includes in SV and C and different data-types in SV or C 
for example.

• Synchronization of events in C is another challenge.

• Converting the print statements from SV to C should be handled.

Figure 6 : Comparison between SV and C Data Types



Results

• The Bar graph compares the number of days taken to do the 
C coding or conversion with and without using the proposed 
framework and highlights the efficiency of the tool.

• Reduces the manual effort of C code change based on design 
changes, by approximately 1 day per week, in turn saving 52 
days in a year.

• The tool was piloted for a live project during the course of 8-
10 months.

• Eliminates the possibility of unnecessary debugs resulting 
due to error-prone coding or conversion of C code arising 
due to spec change.

• Recommended for future generation of derivative projects 
with incremental updates.

Figure 7: Comparison of efforts with and without the Automation



Conclusion

• Despite its relatively high level of abstraction, RTL simulation is a very time-consuming process, 
often requiring nightly or week-long regression runs. 

• The paper describes the basic idea of the framework through a pilot done on the initialization 
sequences used in boot flow and provides some initial experimental results showing its 
effectiveness in improving RTL simulation performance in an automated way.

• Removes the need to perform manual conversion or coding of C sequences of CPU system level 
testbench which is prone to human error as well as time consuming.



Future Potential

• Power Aware simulations

• UPF (Unified Power Format) based enablement

• DFD (Design for Debug) environment bring-up

• Emulation environment bring-up

• The framework has the potential to scale-up to become a completely design spec-based sequence 
generator which would help in multiple dimensions of the SoC testing.  
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