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Motivation

• Coherence protocols trigger complex interactions between heterogeneous mixes of caches 
and other system masters

• Our regular SoC scenarios are less aggressive on cache functionalities as compared to IP 
level testbench.

• Traditional approaches can sometimes miss bugs that arise only in a complex system level 
traffic.

• Writing large numbers of effective tests is difficult, time consuming, and error prone. 



A Typical Multi-Core System Architecture
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Scope of PSS in CPU Verification

• Portability of reusable test cases has long been a goal for semiconductor verification and validation 
teams. No one wants to ‘reinvent the wheel’ by having to rewrite similar tests again and again.

• Verification of the CPU design in our multiple complex mobile/automotive or wearable SoCs is 
mainly done through C tests.

• This configurable testbench takes the specific configurations of the SoC as user-defined inputs, 
generates generic C code for some standard operations, and combines them to generate final C 
scenarios that run on embedded CPUs and exercises the system through diverse relevant solutions.

• The code generated for the simulation platform can then be re-used by the other 3 dependent 
environments, allowing reuse across various verification platforms.



Portable Test And Stimulus: An Accelera Standard

• PSS has been tried and tested in the industry
• Well established Vertical and Horizontal Reuse strategies
• Proven to enhance performance and verification efficiency
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Methodology

• C – based existing test bench
• Input to Solver

• Design specification
• Test and Design constraints
• Pre-built action/function modules
• Verification intent

• Output of Solver
• Solution for verification intent
• C code based on solutions generated
• Coverage report

• Plug and Play
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Test Bench Modification
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Solution Generation
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Solution to Test Case
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Tool View
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Some Example Scenarios

• Fill Cache Boundaries: A stand-alone Allocate to Cache task allocates a 
memory block to cache.

• Cache State Transitions: Using the different variety of opcodes 
supported, this complex test covers various cache state transitions 
with the help of an in-built checker.

• Data Sharing Scenarios: True Sharing and False sharing of data 
between cores in a coherent setup can significantly degrade cache 
performance, in systems when smallest data size accessed is smaller 
than cache line size



Results

• Case study run on Exynos Mobile SoC environment
• Initial setup needed multiple iterations to fix compatibility issues

• 2 months to clean the setup and 3 months to run the complete set of tests

• Target Cache verification vectors
• Verify Cache information such as size, allocation, overflow
• Cache State Transitions : evict, invalidate, cache hit/miss
• Cache performance : True Sharing and False Sharing
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Conclusion

• Though initial effort was high, effort required for future projects is minimal
• Generate coverage reports at each step of test case generation

• Help identify verification loopholes
• Better coverage

• Ease of portability across multiple projects
• Portable, re-usable and scenarios can be easily reproduced

• Confidence in verification due to constrained random scenario generation
• Flexibility to modify test at each step

• Ease of portability across projects
• Number of test cases that can be generated is high compared to manual development
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Future Scope

• Recommended to be implemented in subsequent projects
• Opportunity to stress cache operations at SoC context
• Extend suite to Last Level Caches and I/O Coherency
• Enhance libraries to include newer ARM architectures
• Target power and clock control for power scenarios
• Combine power and Cache operations to stress design
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