(2022

DESIGN AND VERIFICATION™

DVLCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DECEMBER 6 -7, 2022

Building Confidence in System Level CPU Cache Coherency
Verification for Complex SoCs through a Configurable Flexible and
Portable Test Bench

S Shrinidhi Rao, Ruchi Misra, Alok Kumar, Garima Srivastava,
YoungSik Kim, Seonil Brian Choi

SI\MSUNG ace/era

SYSTEMS INITIATIVE

Agenda

* Motivation

* A Typical Multi-Core System Architecture
* Scope of PSS in CPU Verification
e PSS : An Accelera Standard

e Methodology

* TestBench Modification

* Solution Generation

* Tool View

* Results

e Conclusion

* Future Scope

2022

() - =)v{={=]\}

SVSTEMS INTIATIVE : - - EUROPE
® " Y DECEMBER & -7, 2022

Motivation

* Coherence protocols trigger complex interactions between heterogeneous mixes of caches
and other system masters

* Our regular SoC scenarios are less aggressive on cache functionalities as compared to IP
level testbench.

* Traditional approaches can sometimes miss bugs that arise only in a complex system level
traffic.

* Writing large numbers of effective tests is difficult, time consuming, and error prone.

2022

- - - y
L]
,I - c c DESIGN AND VERIEICATION ™
= = — CONMFEREMNCE AMND EXHIBITION
E -
*) - . _
. '] . DECEMBER & -7, 2022

SYSTEMS INITIATIVE

A Typical Multi-Core System Architecture

| | Graphical : . :
Biosoniar Liist Security Engine Neural Engine
Little Core Big Core MODEM
L1 - L2 Cache L1 - L2 Cache
Display Im\z;?deeznd Interrupt
L3 Cache E v Processor Unit Pracsssortiai Controller

ARM CPU SUBSYSTEM

:

]

§

Interconnect Cache

COHERENT INTERCONNECT

1

1

!

OTHER PERIPHERALS LOW SPEED PERIPHERALS

HIGH SPEED WIRED PERIPHERALS

|
WLAN Power Controller Clock Controller
DDR USB3.0 ETHERNET PCle
LTE GPIO Timer
b2 Ral il e BLHY PHY GNSS | UART SPI
| MIPI 12C JTAG
|

2022

DESIGN AND VERIEICATION™

DVCON

COMNFEREMNCE AND EXHIBITION

MUMNIG GE 18
DECEMBER & -7, 2022

accellera) -

SYSTEMS INITIATIVE

Scope of PSS in CPU Verification

* Portability of reusable test cases has long been a goal for semiconductor verification and validation
teams. No one wants to ‘reinvent the wheel’ by having to rewrite similar tests again and again.

 Verification of the CPU design in our multiple complex mobile/automotive or wearable SoCs is
mainly done through C tests.

* This configurable testbench takes the specific configurations of the SoC as user-defined inputs,
generates generic C code for some standard operations, and combines them to generate final C
scenarios that run on embedded CPUs and exercises the system through diverse relevant solutions.

* The code generated for the simulation platform can then be re-used by the other 3 dependent
environments, allowing reuse across various verification platforms.

2022

- - - g
-
acce,le a - c c DESIGN AND VERIFICATION ™
= = — CONMFEREMNCE AMND EXHIBITION
E -
. '] . DECEMBER & -7, 2022

SYSTEMS INITIATIVE

Portable Test And Stimulus: An Accelera Standard

* PSS has been tried and tested in the industry
* Well established Vertical and Horizontal Reuse strategies
* Proven to enhance performance and verification efficiency

()

SYSTEMS INITIATIVE

Methodology

 C - based existing test bench
* |nput to Solver

* Design specification EXISTING C CODE
e Test and Design constraints | |
. . . { GENERATED C CODE
* Pre-built action/function modules J variable iitialization o
o o . - R . VoI generate _C_coqae(vol
’ Verlflcatlon Intent el e S { //generated test case functionality
enerated_c_code(); w———— ;
* OUtpUt Of SOlver j/other generic test sequences //error Ly
* Solution for verification intent ; _ -

* Ccode based on solutions generated
* Coverage report

* Plug and Play

2022

accellersy | BVE DN

. '] . DECEMBER & -7, 2022

Test Bench Modification

DUT VERIFICATION DUT
SPECIFICATION INTENT
T : — it "; I
SCENARIO MODEL ’ COHERENT INT;RCONNECT ...,.«,...‘.;c.g.. {
CONSTRAINT e e | e

SOLVER

TEST CASE = TEST BENCH
SOLVED MODEL |

GENERATED C
TEST CASE GENERATOR [r— TEST CASE

CONSTRAINTS > 1

2022

accellersy | BVE DN

. '] . DECEMBER & -7, 2022

TeNR OO

e n

Solution Generation

TeR B0 0 n

oherency ops ¢ DWWt herency o

T (] d crel f DVE
|

- 100 read_chack date 1500 roc.u .c¢
o o w smi_mem_buff_t

P em sddr b9

em 9 bi (£ YA
fr
g st mmy N1 n.bo
g set.mmu_7[557)
[read_check_data ! [601) I cdn_coherency_ops_c DVE coherency ops
£ smi_sw ops ¢ VE sw Of proc o | cored
proc _tos re
g w1 wrie dats 187)
o “l e
e clean_stack_2 [695)
il _mem it 1 3l - herency obs ¢ DVE coberent
" b pe AT I_cores
" e
. oL ik b N @ 0_2: write_data_cache (691,
& sm! swop DVE sw op
proc tag coreld
(W -'77‘_§A.”
o smi_mem_buff_t
mem segad DLCa AN
!

" el M r ¢8 block tag DI HO

€l

g ML red Ak datas [

2022

DESIGMN AMD VERIEICATION ™

DVGCON

COMNFEREMNCE AND EXHIBITION

DECEMBER & -7, 2022

aecellera

SYSTEMS INITIATIVE

Solution to Test Case

Y

") void read hit miss check(void)
1. FRONTDOOR WRITE |DATA BUFFER {
unsigned int write data frontdoor, write data backdoor, read data;
J unsigned int * write address = (unsigned int ¥) 0x1000;
unsigned int * read address = (unsigned int *) 0x1000;

2. BACKDOOR WRITE iDATA BUEEER J DISABLE MMU] write data frontdoor

T write data backdoor

*write address++
1 *write address++

write data frontdoor;
write data frontdoor;

' DATA BUFFER *write address++ = write data frontdoor;
’ 3. FRONTDOOR READ \ J ENABLE MMU} *write address++ = write data frontdoor;
i ‘ L
1 ; write address = read address;
BACKDOOR WRITE(write address, 4, write data backdoor);
4. COMPARE DATA for (i=0;i<4 ;i++){
read data = *(read address++);
1 ‘ if (read data != write data frontdoor)
printf("ERROR : READ MISS : Data read is fetched from Memory”
else
5. EVICT AND INVALIDATE printf("INFO : READ HIT : Data read is fetched fr
}
1 ‘) invalidate and evict cache ();
DATA BUFFER for (i=0;i<4 ;i++){
[6. BACKDOOR READ 1 J DISABLE MMU J BACKDOOR READ(read address, read data);
N if (read data != write data frontdoor)
printf("ERROR : Cache Eviction failed");
else

printf("INFO : Cache Eviction Success");
7. COMPARE DATA

y - 2022

DESIGMN AMD VERIEICATION ™

mﬂ%m"_- _ DVCON

COMNFEREMNCE AND EXHIBITION

SVSTEMS INTIATIVE - EUROPE

DECEMBER & -7, 2022

Tool View

Ale View Config Commands Help
Mew [ESave | @ Reload | ¥ | | P Solve [Ra - B
GALLERY SCENARIO TREE . STATICVIEW x SCENARIC . CONTENT OF . »
Model . o) Name : scenarlo tributes Tokens Constraints Ty SCENARIO TREE
« 2 scenarie[schedule] : o v | T D EE 8 n .. —_— i
fil_cross ity A A .:?} al: check_cache_evict_line] “ " Hame - .\.ralue ; E a8 CALLERY
MName : - well_nested [E} comp :j, " -
4 Test Suite = L & chain prnc_t..ng Q - Ts SOLUTIONS
45 Coherency & sequence MEm... }:_EELE?
»E3 DVM L@ clean_stack bl (o I8 SOURCE
rB& Memory Access) wd0: write_data_cache user | _ll_core3
v Cache) rd0: read_check_data ﬁ:—gg;:g m dERE
+E Exclusive %, d0: access_end_mem = - _|b_coren R —
v Evict Line @ wd1:write_data © %, a0: check_cache_evict_line a _}E;C:'jlrgl aF AT
B3 Invalidate Cache —® rd1:read_check_data @ vplan 5) ¥ SCENARIO GRAPH
v Invalidate ICache i
B3 False Sharing) rd2: read_check_data + SOLUTION GRAPH
+B5 False Sharing 10 L@ evD: evict_line “mem_block ? | V' 5 | Dseecnl # 5 | GRA
*E True Sharing L@ d1: access_end_mem proc.instance_id 7 _—

' EL
»E3 Atomic Operator
v Stress

@ rd3:read_check_data

rdd: read_check_data

proctag ¢
proc.cluster_tag ¢

proc.arch ?

4«5 Check Cache
& check_cache_invalidate_cache L
@ fill_check_cache_invalidate_cache
@ check_cache_evict_line
@ fill_check_cache_evict_line
& check_cache_read_hit
& fill_check_cache_read_hit
@ check_cache_read_miss S8
& fill_check_cache_read_miss
& check_cache_write_hit) =
&, fill_check_cache_write_hit lJ
@, access_end_mem Showing 21 items 3. | te the
v Power = R 4. di t
@ e ﬂl_ SOLUTION tha va i

Salution

Ty e "ee i

_ ruser loop ont 3 _/

Showing 5 items

I
=

vplan_fill_cache.sln Definition -

vplan_fillslnk = vplan_fill_cachesin =

=

sShowing 33 items
@slib(path="Test Suite/Coherency/Check Cacl
action check cache_evict_line {

“proc_tag : sml_processor_tag_e;

table {-} with full_coherency procs_con:

Name Seed

“men_block: sml_men block e; —
Showing 0 items = —SEa_| L

(2022

DESIGMN AMD VERIEICATION ™

DVGCON

COMNFEREMNCE AND EXHIBITION

DECEMBER & -7, 2 =2

accellera

SYSTEMS INITIATIVE

Some Example Scenarios

* Fill Cache Boundaries: A stand-alone Allocate to Cache task allocates a
memory block to cache.

* Cache State Transitions: Using the different variety of opcodes
supported, this complex test covers various cache state transitions

with the help of an in-built checker.

* Data Sharing Scenarios: True Sharing and False sharing of data
between cores in a coherent setup can significantly degrade cache
performance, in systems when smallest data size accessed is smaller

than cache line size

()

SYSTEMS INITIATIVE

Name

+ 5 Test Sunte
Resu |ts « 5 Coherency
'3 DVM
' Memory Access
' Cache
' B Exclusive
e Case study run on Exynos Mobile SoC environment B3 EvictLine

' Invahidate Cache

* Initial setup needed multiple iterations to fix compatibility issues V& Invalidate ICache

'3 False Sharn
* 2 months to clean the setup and 3 months to run the complete set of tests o Fa“esmr:n;o

e Target Cache verification vectors B3 True Sharing

: , : . : J=1:
* Verify Cache information such as size, allocation, overflow 'E3 Atomic Operator

» Cache State Transitions : evict, invalidate, cache hit/miss VB3 Stress

. . « 5 Check Cache
e Cache performance : True Sharing and False Sharing b e ek e =t

% fill_check_cache_invalidate_cache
% check_cache_evict_kne

% check_cache_read_hit

% fill_check_cache_read_hit

% check_cache_read_miss

D fill_check_cache_read_miss

@ check_cache_wrte_ha
® fill_check_cache_wrte_hat

PSS Based TB

2 access_end_mem

0 50 100 150 200 250 300 350 400 450 , S Power

H Test Bench Bringup Initial Effort ® Test Case Generation and Verification

2022

accelleray - DVCON

SVSTEMS INTIATIVE : EUROPE

DECEMBER & -7, 2022

Conclusion

* Though initial effort was high, effort required for future projects is minimal

* Generate coverage reports at each step of test case generation
* Help identify verification loopholes
* Better coverage
* Ease of portability across multiple projects
* Portable, re-usable and scenarios can be easily reproduced
* Confidence in verification due to constrained random scenario generation
* Flexibility to modify test at each step
e Ease of portability across projects
* Number of test cases that can be generated is high compared to manual development

accellera) - - _ BV EE N

. '] . DECEMBER & -7, 2022

Future Scope

e Recommended to be implemented in subsequent projects
e Opportunity to stress cache operations at SoC context

* Extend suite to Last Level Caches and I/O Coherency

* Enhance libraries to include newer ARM architectures

* Target power and clock control for power scenarios

* Combine power and Cache operations to stress design

2022

- - - y
L]
,l - c c DESIGN AND VERIEICATION ™
= = — CONMFEREMNCE AMND EXHIBITION
E -
L} b * _
. '] . DECEMBER & -7, 2022

SYSTEMS INITIATIVE

Acknowledgement

* The authors would like to thank Samsung Semiconductors India
Research for enabling the work mentioned in this paper. We would
also like to thank DVCon Europe team for giving us the opportunity to
participate in the conference and present our work.

()

SYSTEMS INITIATIVE

