
Building Confidence in System Level CPU Cache Coherency 
Verification for Complex SoCs through a Configurable Flexible and 

Portable Test Bench
S Shrinidhi Rao, Ruchi Misra, Alok Kumar, Garima Srivastava, 

YoungSik Kim, Seonil Brian Choi



Agenda

• Motivation
• A Typical Multi-Core System Architecture
• Scope of PSS in CPU Verification
• PSS : An Accelera Standard
• Methodology
• TestBench Modification
• Solution Generation
• Tool View
• Results
• Conclusion
• Future Scope

2



Motivation

• Coherence protocols trigger complex interactions between heterogeneous mixes of caches 
and other system masters

• Our regular SoC scenarios are less aggressive on cache functionalities as compared to IP 
level testbench.

• Traditional approaches can sometimes miss bugs that arise only in a complex system level 
traffic.

• Writing large numbers of effective tests is difficult, time consuming, and error prone. 



A Typical Multi-Core System Architecture

4



Scope of PSS in CPU Verification

• Portability of reusable test cases has long been a goal for semiconductor verification and validation 
teams. No one wants to ‘reinvent the wheel’ by having to rewrite similar tests again and again.

• Verification of the CPU design in our multiple complex mobile/automotive or wearable SoCs is 
mainly done through C tests.

• This configurable testbench takes the specific configurations of the SoC as user-defined inputs, 
generates generic C code for some standard operations, and combines them to generate final C 
scenarios that run on embedded CPUs and exercises the system through diverse relevant solutions.

• The code generated for the simulation platform can then be re-used by the other 3 dependent 
environments, allowing reuse across various verification platforms.



Portable Test And Stimulus: An Accelera Standard

• PSS has been tried and tested in the industry
• Well established Vertical and Horizontal Reuse strategies
• Proven to enhance performance and verification efficiency

6



Methodology

• C – based existing test bench
• Input to Solver

• Design specification
• Test and Design constraints
• Pre-built action/function modules
• Verification intent

• Output of Solver
• Solution for verification intent
• C code based on solutions generated
• Coverage report

• Plug and Play

7



Test Bench Modification

8



Solution Generation

9



Solution to Test Case

10



Tool View

11



Some Example Scenarios

• Fill Cache Boundaries: A stand-alone Allocate to Cache task allocates a 
memory block to cache.

• Cache State Transitions: Using the different variety of opcodes 
supported, this complex test covers various cache state transitions 
with the help of an in-built checker.

• Data Sharing Scenarios: True Sharing and False sharing of data 
between cores in a coherent setup can significantly degrade cache 
performance, in systems when smallest data size accessed is smaller 
than cache line size



Results

• Case study run on Exynos Mobile SoC environment
• Initial setup needed multiple iterations to fix compatibility issues

• 2 months to clean the setup and 3 months to run the complete set of tests

• Target Cache verification vectors
• Verify Cache information such as size, allocation, overflow
• Cache State Transitions : evict, invalidate, cache hit/miss
• Cache performance : True Sharing and False Sharing

13



Conclusion

• Though initial effort was high, effort required for future projects is minimal
• Generate coverage reports at each step of test case generation

• Help identify verification loopholes
• Better coverage

• Ease of portability across multiple projects
• Portable, re-usable and scenarios can be easily reproduced

• Confidence in verification due to constrained random scenario generation
• Flexibility to modify test at each step

• Ease of portability across projects
• Number of test cases that can be generated is high compared to manual development

14



Future Scope

• Recommended to be implemented in subsequent projects
• Opportunity to stress cache operations at SoC context
• Extend suite to Last Level Caches and I/O Coherency
• Enhance libraries to include newer ARM architectures
• Target power and clock control for power scenarios
• Combine power and Cache operations to stress design

15



Acknowledgement

16

• The authors would like to thank Samsung Semiconductors India 
Research for enabling the work mentioned in this paper. We would 
also like to thank DVCon Europe team for giving us the opportunity to 
participate in the conference and present our work.


