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Motivation

* Coherence protocols trigger complex interactions between heterogeneous mixes of caches
and other system masters

* Our regular SoC scenarios are less aggressive on cache functionalities as compared to IP
level testbench.

* Traditional approaches can sometimes miss bugs that arise only in a complex system level
traffic.

* Writing large numbers of effective tests is difficult, time consuming, and error prone.
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A Typical Multi-Core System Architecture
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Scope of PSS in CPU Verification

* Portability of reusable test cases has long been a goal for semiconductor verification and validation
teams. No one wants to ‘reinvent the wheel’ by having to rewrite similar tests again and again.

 Verification of the CPU design in our multiple complex mobile/automotive or wearable SoCs is
mainly done through C tests.

* This configurable testbench takes the specific configurations of the SoC as user-defined inputs,
generates generic C code for some standard operations, and combines them to generate final C
scenarios that run on embedded CPUs and exercises the system through diverse relevant solutions.

* The code generated for the simulation platform can then be re-used by the other 3 dependent
environments, allowing reuse across various verification platforms.
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Portable Test And Stimulus: An Accelera Standard

* PSS has been tried and tested in the industry
* Well established Vertical and Horizontal Reuse strategies
* Proven to enhance performance and verification efficiency
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Methodology

 C - based existing test bench
* |nput to Solver

* Design specification EXISTING C CODE
e Test and Design constraints | |
. . . { GENERATED C CODE
* Pre-built action/function modules J variable iitialization o
o o . - R . VoI generate _C_coqae(vol
’ Verlflcatlon Intent el e S { //generated test case functionality
enerated_c_code(); w———— ;
* OUtpUt Of SOlver j/other generic test sequences //error Ly
* Solution for verification intent ; \_ -

* Ccode based on solutions generated
* Coverage report

* Plug and Play
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Test Bench Modification
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Solution to Test Case

Y

" ) void read hit miss check(void)
1. FRONTDOOR WRITE |DATA BUFFER {
unsigned int write data frontdoor, write data backdoor, read data;
J unsigned int * write address = (unsigned int ¥) 0x1000;
unsigned int * read address = (unsigned int *) 0x1000;

2. BACKDOOR WRITE iDATA BUEEER J DISABLE MMU ] write data frontdoor

T write data backdoor

*write address++
1 *write address++

write data frontdoor;
write data frontdoor;

' DATA BUFFER *write address++ = write data frontdoor;
’ 3. FRONTDOOR READ \ J ENABLE MMU} *write address++ = write data frontdoor;
i ‘ L
1 ; write address = read address;
BACKDOOR WRITE(write address, 4, write data backdoor);
4. COMPARE DATA for (i=0;i<4 ;i++){
read data = *(read address++);
1 ‘ if (read data != write data frontdoor)
printf("ERROR : READ MISS : Data read is fetched from Memory”
else
5. EVICT AND INVALIDATE printf("INFO : READ HIT : Data read is fetched fr
}
1 ‘ ) invalidate and evict cache ();
DATA BUFFER for (i=0;i<4 ;i++){
[ 6. BACKDOOR READ 1 J DISABLE MMU J BACKDOOR READ(read address, read data);
N if (read data != write data frontdoor)
printf("ERROR : Cache Eviction failed");
else

printf("INFO : Cache Eviction Success");
7. COMPARE DATA
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Tool View
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@slib(path="Test Suite/Coherency/Check Cacl
action check cache_evict_line {

“proc_tag : sml_processor_tag_e;

table {-} with full_coherency procs_con:

Name Seed

“men_block: sml_men block e; —
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Some Example Scenarios

* Fill Cache Boundaries: A stand-alone Allocate to Cache task allocates a
memory block to cache.

* Cache State Transitions: Using the different variety of opcodes
supported, this complex test covers various cache state transitions

with the help of an in-built checker.

* Data Sharing Scenarios: True Sharing and False sharing of data
between cores in a coherent setup can significantly degrade cache
performance, in systems when smallest data size accessed is smaller

than cache line size
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Conclusion

* Though initial effort was high, effort required for future projects is minimal

* Generate coverage reports at each step of test case generation
* Help identify verification loopholes
* Better coverage
* Ease of portability across multiple projects
* Portable, re-usable and scenarios can be easily reproduced
* Confidence in verification due to constrained random scenario generation
* Flexibility to modify test at each step
e Ease of portability across projects
* Number of test cases that can be generated is high compared to manual development
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Future Scope

e Recommended to be implemented in subsequent projects
e Opportunity to stress cache operations at SoC context

* Extend suite to Last Level Caches and I/O Coherency

* Enhance libraries to include newer ARM architectures

* Target power and clock control for power scenarios

* Combine power and Cache operations to stress design
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