

1

An Accelerated System Level CPU Verification

through Simulation-Emulation Co-Existence

Ruchi Misra, Samridh Deva, Sai Krishna Pallekonda, Alok Kumar, Garima Srivastava,

Samsung Semiconductors India R&D, Bangalore,

 ruchi.misra@samsung.com, samridh.deva@samsung.com , p.saikrishna@samsung.com ,

kumar.alok@samsung.com, s.garima@samsung.com

Youngsik Kim, Seonil Brian Choi,

Samsung Electronics, Korea,

ys31.kim@samsung.com, seonilb.choi@samsung.com

Abstract— The most significant hurdle currently for design verification is the very long simulation time

for functional and low-power scenarios of complex designs at the SoC level. This huge simulation time

arises due to the addition of multiple heterogeneous processor cores, graphics processors, accelerators,

several peripherals, DDR, etc., and makes iterative debugging a time-consuming and sometimes inefficient

task. While simulation is suitable for a software arrangement that tries to mimic all the actual conditions,

emulators are one step closer to this aim, with almost the whole target device virtualized. Hardware

Emulation is the technique of prototyping real SoC design and accelerating the speed of design execution.

The methodology presented in this paper has the potential to be scaled to various platforms across different

designs like Automotive SoCs, Mobile SoCs, and Wearable SoCs, along with its uniqueness and complexity.

In order to uncover bugs related to Low-Power functionalities, testing involves traversing through multiple

Power-up, and Power-down sequences, and hence these scenarios are best suited for testing on emulators.

Some of the other long-running cases that could potentially reap the most benefit are IO Coherent scenarios

which involve real RTL of GPU or other Multimedia blocks along with real CPUs. Hence, this paper targets

bridging the gap between Design and Time-to-market using co-existing simulation and emulation

methodology and walks through some novel approaches that cover stress areas of functional verification.

I. INTRODUCTION

Hardware-assisted verification, or emulation, delivers the capacity and performance for extremely fast, full

System-on-Chip testing. Emulation enables testing of a large number of long-running test cases in a fraction of

the time consumed by simulation. In doing that, it also allows more design requirements to be covered while more

bugs are uncovered. For the purpose of this paper, we have done extensive testing of functional scenarios spanning

from Coherency to Dynamic voltage and Frequency Scaling to Power Aware runs of various low power scenarios

which are very critical for a competitive SoC in these times. Since Emulators are running at actual clock speed

and each of its hardware components (FPGA, on-chip memory, and off-chip memory) are running at megahertz

speed, the throughput of design becomes really high, and the overall verification life cycle is sped up.

Figure 1 below shows a high-capacity system emulator with the hardware blocks associated with it. In the

Server, the Design Under Test (DUT) is mapped onto one or several FPGAs and memory chips. The test

environment is mapped onto dedicated FPGAs (interface FPGAs) which implement the Hardware Test Bench.

The Emulator Server unit is connected to the host PC through a high-speed interconnection board.

mailto:ruchi.misra@samsung.com
mailto:samridh.deva@samsung.com
mailto:p.saikrishna@samsung.com
mailto:kumar.alok@samsung.com
mailto:s.garima@samsung.com
mailto:ys31.kim@samsung.com
mailto:seonilb.choi@samsung.com

2

II. EMULATOR COMPILATION

The compiler as depicted in Figure 2 starts with the original

Register-Transfer Level (RTL) code of the design and automates all of

the necessary steps to synthesize and map the design for a given

emulator hardware configuration. The emulator compilation has 4-

stages: Front-end, system-level back compilation, Core-level backend

compilation and FPGA Place and Route. The first stage Synthesizes

RTL source files to generate gate-level netlists. System-level back-end

compilation splits extra-large netlists into medium sized netlists and

performs system-level place and route and static timing analysis

generating the appropriate databases for runtime environment. The

compilation maps medium-sized netlists onto Emulator server and

FPGA Place and Route creates the binary files for the FPGAs. The

choices when creating the compilation project are important because a

correct compilation project makes design verification easier. An

optimized compilation balances compilation efficiency and emulation

performance.

III. RELATED WORK

Power-aware Verification of SoCs has been around for over a decade ever since IEEE released the UPF

standard. Early works such as [1],[2],[3] laid the foundation for simulation-based power-aware verification of

Systems-On-Chip, since then, advancements were made by industry partners to streamline UPF verification flows.

Today, we not only have multi-core SoC designs but also multi-cluster SoCs with dual architecture processors

Figure 1 : Hardware of Emulation Platform

Figure 2 : Emulator Compilation Flow

3

implemented on the same die. Needless to say, this increase in complexity due to SoC architecture evolution has

seeped into the requirements of power-aware verification and is fast becoming the long-pole of the verification

lifecycle. To showcase the results obtained in this paper, we divided the power-aware verification requirements

into a number of test categories and successfully accelerated the power-aware verification lifecycle with the use

of emulators by incorporating UPF design libraries and power domain control into the design images used for

emulation-based verification. This has resulted in up to 40x savings in time and resources.

IV. FUNDAMENTAL METHODOLOGY

A. Test Planning and Test Priority

 A diligently made test-plan gives greater predictability, more aggressive innovation and handles late-stage

spec changes. Keeping this in perspective, we prepared our test-plan in such a way that the critical and long

running functionalities like low-power scenarios, random stress traffic etc. are targeted to run on Emulation

platform in order to give faster results. Due to certain limitations in emulation such as missing checkers or

difficulty in debug, such cases could be recreated on simulation easily. During the verification cycle, the test plan

will usually go through several reviews and needs to be approved prior to execution.

After the test plan is completed, it would go through test prioritization. Setting the test priorities is not really

a simple task and great responsibility lies on getting the priorities right since the priorities set the order of the test

plan execution and debug. Our aim is to categorize the tests and their priority such that verification milestones are

not blocked due to the run time of some of the important scenarios.

B. Migration to Emulation

Initially few basic sanity tests are run in emulation and it is carried out via a

step-by-step process where the set-up that needs to be done before the actual

emulation run is brought up. Once the scenarios are identified as emulation

closure items, their C image files are generated after compile similar to

simulation of C code. As per the steps shown in Fig.3, the verification engineer

is needed to identify which functional scenario needs to run in which

environment. Once identified, a variety of mixed functionalities are run on both

simulation and emulation for comparison of the run time. Starting with the

desired scenarios which need to be run, we compile the C test and generate the

image file which can be either run on full image or base image depending on

the blocks involved. Using certain scripts to generate or separate the binary file

with design data and using .tcl file for rest of the setup changes, the run is

launched on Emulation Platform.

C. Enhancements Done

In addition to migrating the complex scenarios of SoCs to Emulation, this

paper also targets to automate the process of migration in order to improve the

efficiency. As shown in Fig. 3, the separation of binary files in case of full

image, application for license and the start and stop of waveform dump, all

require involvement of the user. All these steps are automated to make it into a

single input, single command scheme.

Figure 3 : Basic Steps of migrating

a simulation run to emulator

4

V. COMPLEX COHERENCY SCENARIO ON EMULATOR

Understanding the fact that the processor vendor may not

provide coherent connection mechanism for multiple clusters

and system level Cache coherency is fundamentally had to

verify, we tried to create a complex coherency scenario at SoC

level since we are connecting multiple clusters together and

each core in each cluster will have their own private L1,

private/shared L2 caches and shared L3 caches. In addition to

this, there can be a system level cache or last level cache in

the system, hence adding thorough requirement for

coherency testing at full-chip.

We successfully created a stress scenario mixing varying

traffic such as DVM, exclusive accesses, IO coherent

transactions etc which is an ideal candidate for emulator run.

We also varied page table properties and memory ordering in

these scenarios and created multiple cache-line evictions.

VI. DYNAMIC VOLTAGE AND FREQUENCY SCALING SCENARIO

We all know that DVFS provides ways to reduce power

consumption of chips on the fly. Different design Blocks at SoC

work on different frequency and verification team has to traverse

through all the voltages and frequencies for testing purpose. But

at the same time its important to note that testing/scaling of

frequencies for memory interface, cores, coherent interconnects

etc. takes huge simulation time. Hence we created and ran this

scenario on emulator platform in order to gain significant

confidence in our DVFS tests.

APPLICATION

Figure 4 : Typical Complex SoC and a Complex

Coherency Scenario

Figure 5 : Dynamic Voltage and Frequency

Figure 6 : Different blocks of SoC operating on different Voltage/Clock

5

VII. LOW POWER SCENARIOS

We tried to run various low power scenarios at Emulation level like

Core/Cluster Clock Gating schemes, Memory Retention schemes as well as

complete power down and sleep scenarios for various blocks of SoC. The Figure

7 on the right shows different processor states possible and the waveform in

Figure 8 shows a typical Power Down scenario for Cores and Cluster which can

be verified using emulator in an efficient manner. These low power scenarios are

also run in Power-Aware setup with UPF incorporated. The entire methodology

to enable Power-Aware runs is explained in upcoming sections of this paper.

VIII. UPF ENABLEMENT AND COMPILATION FLOW

A. Enabling UPF based Power Aware Runs on Emulator

This methodology ensures that all synthesizable design components are re-used between PA Simulation and

PA Emulation Design Targets thus enabling consistency of testing between PA Simulation and PA Emulation test

environments. This means now we can use both platforms to complement each other in the Verification lifecycle

with a high degree of confidence. Further in the paper, we shall see how we have efficiently offloaded long running

power aware scenarios to the PA Emulation environment to bring down the testing time to a fraction of what it

was in the PA Simulation environment.

The topology of the power network is described by the UPF script for the design and is an input to the compiler.

the emulation compiler chosen supports the following standards of UPF (Unified Power Format) versions:

● UPF 1.0 and UPF 2.0 (IEEE 1801-2009 standard)

● Limited set of commands from UPF 2.1 (IEEE 1801-2013 standard)

The compiler chosen also supports both hierarchical and non-hierarchical UPF, hence inside of the UPF files,

hierarchical paths can be declared and applied.

Figure 7 : Power State transitions

Figure 8 : Power Down modes for Cores and Cluster

6

Figure 9 : A Sample UPF code describing power intent of the design

B. Compiling a PA Emulation Design Target

The first step is to do Makefile changes and identifying compilation options that need to change for running

low-power scenarios. While compiling, we need to fix any errors that may come due to any power related ports

for any IP instances. We also need to ensure the availability of complete list of UPF libraries to be included. Next

step is to use the available utility to convert present libraries to Emulation compatible libraries. After that we can

run lib to DB conversion script and convert libraries to the format needed. After all this, once we fix all the UPF

compilation issues related to version or any specific tool option, we can run our basic single/multi core power

down scenarios to verify that the intent of the test has been achieved.

7

Figure 10 : Methodology of running PA runs on Emulator

C. Power Aware Compilation Flow on Emulator

As shown in the Figure 11 below, both UPF files and RTL files are fed to the EDA tool which understands the

power intent of the design through UPF files and functional intent from design files. After the process of analysis,

elaboration and splitting, and then synthesis, EDIF files are produced which is a vendor-neutral file format used

to store netlists.

The power-aware emulation model compilation flow presents us with the following advantages:

● Common semantics and analysis between simulation and emulation models/targets.

● Similar UPF constructs are supported between simulation and emulation environments.

● Early error flagging capabilities of the simulator tool are leveraged.

● Precedence Rules and implementation carried over from simulation target.

● Debug continuity across PA-Simulation and PA-Emulation.

8

Figure 12 : List of important UPF Commands and their usage

Figure 11 : Unified Compilation flow for Power Aware Run

D. Important Commands and APIs used for UPF enablement

Figure 12 below illustrates the important UPF commands that are leveraged from PA-Sim target’s power intent.

The Emulator also provides a set of C++ APIs through the Class “PowerMgt” that seamlessly enables Power

Aware Verification on emulator. In the below table, some of the important members of the PowerMgt Class are

discussed.

9

Figure 13 : Important C++ API's used during PA run

IX. COMMON ERRORS FACED AND THEIR SOLUTION

A. Clash of Rules and Design Attributes amongst various IPs:

One of the most frequent errors that we faced during model compilation is the enabling/disabling of power

well biases varying from one IP to another and clashing with the power bias enabled/disabled rule at the SoC

level. To resolve this, we had set enable_bias to false for all IPs and the SoC top.

Figure 14 : Most frequent error during model compilation

B. Corrupt cell libraries:

Cell libraries for various IPs have vastly different release schedules and hence during integration, sometimes

we end up with stale and corrupt lib paths which need to be updated manually.

Figure 15 : Error due to Corrupt Cell Libraries

10

Figure 17 : Power Aware Run Results on Synopsys Platform

X. RESULTS AND CONCLUSION

1. This paper demonstrates how multiple long-running scenarios can be smoothly ported onto an emulation

platform and is much easier and faster than simulation.

2. The experiments were carried out for several functional and low power scenarios along with simulation

for the same scenario on same design drop for comparison.

3. The run times were recorded and analyzed. The corresponding plots are shown in Figure 16 as an

indicator of the results.

4. By using this method, we significantly reduced the number of iterations needed, debug time, and the

verification schedule. Current results are indicative and based on two emulator platforms from vendors

like Cadence and Synopsys however with latest version platforms, the benefits observed are further more.

5. We also narrowed down the areas of critical bugs since we specifically aim to find relevant bugs early

through this environment and not the complete coverage.

6. Further enhancing the process by adding automation, verification engineer can maneuver between the

two environments very easily as per the requirement.

7. The results achieved in some of the Exynos Mobile SoCs and Automotive SoCs were demonstrative of

the fact that we saved at least 50X time in closure of certain critical long pole features.

Figure 16 : Non-Power Results Across Two Platforms

11

I. REFERENCES

[1] F. Bembaron, R. Mukherjee, A. Srivastava, “Low Power Verification Methodology using UPF”, in

Conference on Electronics Systems Design and Verification Solutions, DVCON 2009

[2] C. Trummer, C.M Kirchsteiger et.al., “Simulation-based power aware verification of systems-on-chip designs

using UPF IEEE 1801”, NORCHIP 2009

[3] J. Liu, M. Hong, B.H. Lee, J. Choi, H. Won, K. Choi, H. Vardhan, A. Kher, “Low power verification with

UPF: Principle and Practice”, in Conference on Electronics Systems Design and Verification Solutions,

DVCON 2010

