
An Accelerated System Level CPU Verification through Simulation-
Emulation Co-Existence

Ruchi Misra, Samridh Deva, P Sai Krishna, Alok Kumar, Garima Srivastava
YoungSik Kim, Seonil Brian Choi

Outline

• Need for adoption of Emulation in early Design Verification

• Pre-Silicon Verification flow

• Emulator Compilation flow

• Methodology

• Case Studies

• Enhancements done

• Results

• Conclusion

• Future Scope and Care Abouts

• Acknowledgement

Need for adoption of Emulation in early Design Verification

Very long simulation time

Large T-A-T for iterations

Creating corner case scenarios

Coverage Closure

Security and Functional Safety

Low Power Verification

Huge Design Complexity

Introduction

• Shrinking turn around times

• Need for faster simulations and quicker results

• Delay in time to market

Motivation

Extremely fast, full System-on-
Chip testing

Emulation enables longer test
cases to be run in less time

Accelerated Verification flow

Quicker debug iterations

Cache Coherent Interconnect

Memory Controller

Multi
Core

Multi
Core

GPU
(IO Coherent)

GIC

Peripheral
Components

Cache Cache

Cache

Network Interconnect

Audi
o

and
Vide

o

Pre-Silicon Verification Flow

Design Specs and Requirements

Verification

Simulation and Emulation (Iterative Process)

Calculate the Coverage

Test Cases and
TLM

Design
DUT

Emulation Platform

Emulation Compilation Flow

Front end
compilation

System level
back

compilation

Core level
back-end

compilation

Place and
Route

Motivation for Power Aware Verification at SoC

• Power-aware Verification of SoCs has been around for over a decade ever since IEEE released the
UPF standard.

• Today, we not only have multi-core SoC designs but also multi-cluster SoCs with dual architecture
processors implemented on the same die.

• Needless to say, this increase in complexity due to SoC architecture evolution has seeped into the
requirements of power-aware verification and is fast becoming the long-pole of the verification
lifecycle.

• We divided the power-aware verification requirements into a number of test categories and
successfully accelerated the power-aware verification lifecycle with the use of emulators by
incorporating UPF design libraries and power domain control into the design images used for
emulation-based verification.

• This has resulted in up to 40x savings in time and resources.

Basic Methodology

Preparing
the Test-Plan

Setting the
Test Priority

Compile and
Run

Select Desired Scenario and generate .vrom file

Determine which blocks are required and which
are faked. Choose Base or Full Image accordingly

Base Image Full Image

Script to generate a binary
file using design data

Separate the Binary files
with desired headers and

sizes

Prepare a .tcl file with all the
information and paths

Apply for License and run

Case-Study 1: Complex Coherency Scenario

SoC teams are connecting multiple clusters together

Processor vendor may not provide coherent
connection mechanism for multiple clusters

System level Cache coherency is fundamentally had
to verify !

Stressed scenarios mixing these:

Cache-line
Evictions

Page Table
Properties

Memory
Ordering

Power Scaling

4-CPU
CLUSTER

4-CPU
CLUSTER

GPU DSP

Cache-Coherent Fabric

MEMORY
CONTROLLER

MEMORY
CONTROLLER

EthernetUSBPCIe

CACHE CACHE CACHE CACHE

L3 CACHE

CACHECACHECACHE

MEMORY MEMORY

Case-Study 2: Dynamic Voltage and Frequency Scaling

DUT

Power
Management LUT

[fclk↔ Vnom]

Clk
Ctrl

Voltag
e Ctrl

Power
Supply

Processor
Core

Memory
Coherent

Interconnect
DSU

Voltage 1 Voltage 4Voltage 3Voltage 2

Clock 1 Clock 4Clock 3Clock 2

Ways to reduce power consumption of chips on the
fly

Different Design Blocks at SoC work on different
frequency

Verification team has to traverse through all the
frequencies for testing

Testing/Scaling of frequencies for memory interface,
cores, coherent interconnects etc take huge

simulation time !

Case-Study 3: Low Power Scenarios

✓Various low power scenarios at Emulation level

✓Core/Cluster Clock Gating schemes, Memory

Retention schemes as well as complete power

down and sleep scenarios for various blocks of

SoC.

✓Figure shows different processor states possible

and the waveform shows a typical Power Down

scenario for Cores and Cluster which can be

verified using emulator in an efficient manner.

✓These low power scenarios are also run in

Power-Aware setup with UPF incorporated.

Methodology : Low Power Set-up

❑Both UPF files and RTL files are fed to the EDA
tool which understands the power intent of the
design through UPF files and functional intent
from design files.

❑After the process of analysis, elaboration and
splitting, and then synthesis, EDIF files are
produced which is a vendor-neutral file format
used to store netlists.

❑The power-aware emulation model compilation
flow has:

➢ Similar UPF constructs are supported

between simulation and emulation

environments.

➢ Debug continuity across PA-Simulation and

PA-Emulation.

Compiling a PA Emulation Design Target

❑Makefile changes and identifying compilation options that need
to change for running low-power scenarios.

❑While compiling, we need to fix any errors that may come due
to any power related ports for any IP instances.

❑We also need to ensure the availability of complete list of UPF
libraries to be included.

❑Next step is to use the available utility to convert present
libraries to Emulation compatible libraries.

❑After that we can run lib to DB conversion script and convert
libraries to the format needed.

❑After all this, once we fix all the UPF compilation issues related
to version or any specific tool option, we can run our basic
single/multi core power down scenarios to verify that the intent
of the test has been achieved.

❑ This methodology ensures that all
synthesizable design components are re-
used between PA Simulation and PA
Emulation.

❑ This means now we can use both
platforms to complement each other in
the Validation lifecycle with a high degree
of confidence.

❑We have efficiently offloaded long
running power aware scenarios to the PA
Emulation environment to bring down the
testing time to a fraction of what it was in
the PA Simulation environment.

Power Aware Compilation Flow

Some Common Issues

✓Clash of Rules and Design Attributes
amongst various IPs:

Enabling/disabling of power well biases varies
from one IP to another and sometimes clashes
with the power bias enabled/disabled rule at
the SoC level. To resolve this, we had set
enable_bias to false for all IPs and the SoC top.

✓Corrupt cell libraries:

Cell libraries for various IPs have vastly different
release schedules and hence during integration,
sometimes we can end up with stale and
corrupt lib paths which need to be updated
manually.

Some Enhancements Done

Single Step Run of the Scenario1
• Automate the process of launching the run

• Waveform dump using the script

• Binary file split and use for full image runs

Changing signal value during run time2
• Deposit

• Inject

• Force

Enable Checkers/Monitors3
• Some SV-C handshakes should be enabled in Emulator run

• Specific Tracer/Monitor enablement

Results

Conclusion

• Multiple long-running scenarios can be smoothly ported onto an emulation platform and are much easier
and faster than simulation.

• The experiments were carried out for several functional and low power scenarios along with simulation for
the same scenario on same design drop for comparison.

• The run times were recorded and analyzed. The corresponding plots are shown in Figure 16 as an indicator
of the results.

• By using this method, we significantly reduced the number of iterations needed, debug time, and the
verification schedule. Current results are indicative and based on two emulator platforms from vendors like
Cadence and Synopsys.

• We also narrowed down the areas of critical bugs since we specifically aim to find relevant bugs early
through this environment and not the complete coverage.

• Further enhancing the process by adding automation, verification engineer can maneuver between the two
environments very easily as per the requirement.

• The results achieved in some of the Exynos Mobile SoCs and Automotive SoCs were demonstrative of the
fact that we saved at least 50X time in closure of certain critical long pole features.

Clock 1 Clock 4Clock 3Clock 2

Huge saving in SOC simulation run
time

Scalable to various platforms across
different designs

Major use case in low power
functionalities

Has the potential to be applied to IO
Coherent scenarios

Licenses are limited for parallel runs

Debug prints, logs and checkers are difficult
to integrate and use

Randomization of signals and memories is
difficult

Complete waveform dump with all
hierarchies and full time duration limits the
performance

BENEFITS LIMITATIONS

Clock 1 Clock 4Clock 3Clock 2

4 State runs on Emulator

Unified compile flow

Hybrid Emulation

Enabling SV assertions in ZeBu

Usage of software code

Choosing the scenarios wisely

ZTDB/FSDB dump duration

Additional task of model enablement

Future Scope Care abouts

Acknowledgement

Clock 1 Clock 4Clock 3Clock 2

The authors would like to thank Samsung Semiconductors India Research for enabling the work
mentioned in this paper. We would also like to thank DVCon Europe team for giving us the
opportunity to participate in the conference and present our work.

