
How to achieve verification closure of configurable 
code by combining static analysis and dynamic testing

Antonello Celano, STMicroelectronics,

Alexandre Langenieux, MathWorks



Context

• Develop generic MCAL Module drivers (e.g. Mcu,CAN) for PowerPC 
and ARM for Automotive customers

• Those drivers must be configurable for each customer

• Respect of Automotive safety and security standards



Challenge

• Extreme configurable code

• Fulfill standard code verification requirements
• MISRA-C:2012

• CERT-C

• Code Coverage (Decision, Condition, MC/DC)

• Increase confidence in software verification

Project Number of variant parameters 

Number of 

boolean preprocessor 

macro (#define) 

Number of software 

variants considering 

only boolean parameters 

MCU 

Driver 

357  

(208 booleans, 78 enumerations, 103 integers,  9 strings) 
58 258 = 288*1015 

CAN 
Module 

97  

( 32 booleans, 25 enumerations, 39 integers, 9 strings) 
50 250 = 1015 

 



MCAL and CAN Drivers Variant Definition
• Configurable code

• Metacode

• Source Code

• Configuration parameters

• Variant
• Source code

• Generated code
• Metacode

• "Valued" cfg parameters



Variant Subset Selection for Verification Closure

Variant Selection:

• iterative process 

• developer expertise

• aggregated code coverage



Verification Closure Development Process

• On each selected variant
• Testing

• Functional testing

• Robustness testing

• Static analysis
• Coding rules checking

• Code metrics

• Consolidate results for each category



Results

• Errors found earlier in software, before reaching the customer

• Quality of all possible variants is controlled

Project 

Number of software 

variants considering 

only boolean 

parameters 

Subset of variants 

used with the 

described 

methodology 

Coverage 

(Statement, branch, 

MCDC) thresholds 

Achieved 

Coverage 

Score 

MCU Driver 258 = 288*1015 177 100% 100% 

CAN Module 250 = 1015  179 100% 100% 

 



Future Enhancements

• Automatic extraction of the smallest software variants

• Improve code metrics consolidation across variants

• Extend code verification to formal code verification



Take Away

• Significant improvement of 
• productivity of ST development team 

• the quality of the configurable software

• Reusable framework beyond firmware development

• Possible to extend this method to other software verification 
activities



Questions


