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Overview

• Scale and complexity at Graphcore
• Constructing subsystems and chips
• Existing solutions
• Goals in developing a new solution
• Introduction to Soumak
• Shift-left of issue detection



Scale and Complexity

• Reticle-scale die with 59.4 billion transistors
• 1,472 instances of the Tile processor
• Numerous SERDES interfaces for Ethernet & PCIe

• Subsystems are complex and deeply hierarchical
• Hundreds of components
• Thousands of connections
• Many distinct signal types



Constructing Complex Subsystems

• Infeasible in SV/VHDL 
• Connectivity is horrendous
• Thousands of connections
• Many similarly named and sized signals
• Verbose syntax

• Chances of an error are high
• Lint can only help so much
• Exhaustive simulation and formal proof infeasible at these scales



Abstractions

• Deeper hierarchy
• Related modules can be grouped together to contain wiring
• Can lead to repetitive hierarchical connections

• Use SV/VHDL interfaces
• Grouped signals reduce complexity, lower chance of an error
• Commercial tool support is highly variable

• Describe connectivity at a higher level
• Use another language to describe (and automate) connectivity



Existing Solutions

• Accelera IP-XACT
• Syntax focused on machine readability, not hand editing
• EDA tooling required to generate RTL
• Tool APIs and reporting limit custom flows

• Alternative HDLs like Chisel (Scala) & Amaranth (Python)
• Partial adoption is difficult
• Shims around SV/VHDL can be painful



Requirements

• Concise syntax for describing connectivity
• Tight integration with existing SystemVerilog design
• Support for:
• Nested interfaces
• Constants, typedefs, and data structures
• Topologies such as rings, chains, and meshes

• Early-as-possible sanity checks
• Support for backends such as code generation
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Defining a Leaf Node
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Defining a Leaf Node
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Interfaces
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Interfaces

jtag.py

Comments are stored
with each declaration

Signals can travel
with or against the

interface
Base signal types &
other interfaces can
be referenced



Types & Constants

hex_package.py

Explicit values and
arithmetic is fully

supported
Simple data types can
be declared



Enumerations

hex_package.py

Implicit or explicit
value assignments Supports indexing,

one-hot, and Gray
coding



Structs & Unions

hex_package.py

References can be
made to enums,

structs, and unions



Interfacing with SystemVerilog



Subsystem Assembly

hex_core.py hex_dma.py
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Subsystem Assembly

all_children is expanded during elaboration, 
allowing multiple connections to be formed with a 
single statement



Topologies

• Rings, chains, and meshes topologies can be 
constructed using special ‘traits’

• Multiple complex connections can be formed with 
just a single statement

• Design tracks which connection patterns have 
been added

self.nodes.all.inbound expands in elaboration to
create a list of all inbound access ports



Benefits

• Fewer connection statements
• Concise and easy to audit code
• Less chance of a mistake

• Strict type checks
• Impossible to connect incompatible signals without an explicit cast
• Fewer lines of code to audit
• Works for single wires and complex buses



Declaration Checks



Checks on Declarations



Checks During Elaboration



Checks on the Assembled Design



Precise Sign-offs



Connection Tracing



Connection Tracing



Connection Tracing



Connection Tracing
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Summary

• Assembling reticle sized ASICs is a difficult task
• Soumak abstracts the assembly of subsystems
• Shared constants and types softens boundary between tools
• Complex interface descriptions reduces wiring verbosity
• Python can be leveraged to automate connectivity

• Rich descriptions enable earlier checks
• Strict type checking helps to reduce mistakes
• Analysis flows can crawl through elaborated designs
• Checkers can flag gross issues early in the design process


