
Soumak
How rich descriptions enable early detection of hookup issues

Peter Birch and Thomas Brown, Graphcore



Overview

• Scale and complexity at Graphcore
• Constructing subsystems and chips
• Existing solutions
• Goals in developing a new solution
• Introduction to Soumak
• Shift-left of issue detection



Scale and Complexity

• Reticle-scale die with 59.4 billion transistors
• 1,472 instances of the Tile processor
• Numerous SERDES interfaces for Ethernet & PCIe

• Subsystems are complex and deeply hierarchical
• Hundreds of components
• Thousands of connections
• Many distinct signal types



Constructing Complex Subsystems

• Infeasible in SV/VHDL 
• Connectivity is horrendous
• Thousands of connections
• Many similarly named and sized signals
• Verbose syntax

• Chances of an error are high
• Lint can only help so much
• Exhaustive simulation and formal proof infeasible at these scales



Abstractions

• Deeper hierarchy
• Related modules can be grouped together to contain wiring
• Can lead to repetitive hierarchical connections

• Use SV/VHDL interfaces
• Grouped signals reduce complexity, lower chance of an error
• Commercial tool support is highly variable

• Describe connectivity at a higher level
• Use another language to describe (and automate) connectivity



Existing Solutions

• Accelera IP-XACT
• Syntax focused on machine readability, not hand editing
• EDA tooling required to generate RTL
• Tool APIs and reporting limit custom flows

• Alternative HDLs like Chisel (Scala) & Amaranth (Python)
• Partial adoption is difficult
• Shims around SV/VHDL can be painful



Requirements

• Concise syntax for describing connectivity
• Tight integration with existing SystemVerilog design
• Support for:
• Nested interfaces
• Constants, typedefs, and data structures
• Topologies such as rings, chains, and meshes

• Early-as-possible sanity checks
• Support for backends such as code generation



Workflow

Soumak
.py

DBs

<xml/>

Machine
Readable

Specifications

Soumak

Early
(Declaration)

Checks
Elaboration

Checkers
Unconnected Ports

Simple CDC
Unique Signals

Backends
Code Generation

Reporting
Design Explorer

SV

HTML



Defining a Leaf Node

hexcpu.py

hexcpu

clk

rst
fault



Defining a Leaf Node

hexcpu.py

Built-in primitive
signal types

Decorators check 
hardware definition

on declaration Decorator reads and
checks the type 
annotations



Interfaces

jtag.py

JTAG
TCK
TRST
TMS
TDI
TDO



Interfaces

jtag.py

Comments are stored
with each declaration

Signals can travel
with or against the

interface
Base signal types &
other interfaces can
be referenced



Types & Constants

hex_package.py

Explicit values and
arithmetic is fully

supported
Simple data types can
be declared



Enumerations

hex_package.py

Implicit or explicit
value assignments Supports indexing,

one-hot, and Gray
coding



Structs & Unions

hex_package.py

References can be
made to enums,

structs, and unions



Interfacing with SystemVerilog



Subsystem Assembly

hex_core.py hex_dma.py



Subsystem Assembly
hex_subsystem

clk
rst
debug

hex_core

clk
rst
debug

dma_req
dma_state

hex_dma

clk
rst
request
state



Subsystem Assembly
hex_subsystem

clk
rst
debug

hex_core

clk
rst
debug

dma_req
dma_state

hex_dma

clk
rst
request
state



Subsystem Assembly

all_children is expanded during elaboration, 
allowing multiple connections to be formed with a 
single statement



Topologies

• Rings, chains, and meshes topologies can be 
constructed using special ‘traits’

• Multiple complex connections can be formed with 
just a single statement

• Design tracks which connection patterns have 
been added

self.nodes.all.inbound expands in elaboration to
create a list of all inbound access ports



Benefits

• Fewer connection statements
• Concise and easy to audit code
• Less chance of a mistake

• Strict type checks
• Impossible to connect incompatible signals without an explicit cast
• Fewer lines of code to audit
• Works for single wires and complex buses



Declaration Checks



Checks on Declarations



Checks During Elaboration



Checks on the Assembled Design



Precise Sign-offs



Connection Tracing



Connection Tracing



Connection Tracing



Connection Tracing

0x1000



Summary

• Assembling reticle sized ASICs is a difficult task
• Soumak abstracts the assembly of subsystems
• Shared constants and types softens boundary between tools
• Complex interface descriptions reduces wiring verbosity
• Python can be leveraged to automate connectivity

• Rich descriptions enable earlier checks
• Strict type checking helps to reduce mistakes
• Analysis flows can crawl through elaborated designs
• Checkers can flag gross issues early in the design process


