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Abstract — Over the last decades HW/SW software systems have become increasingly complex. Today, even small
embedded systems are made up of different IP blocks from many vendors and execute complex software stacks
consisting of millions of lines of code. This complexity ultimately leads to an increased risk of software bugs and
security vulnerabilities that compromise the system’s security and safety. To detect these issues early in the design
cycle, full system simulators based on the SystemC TLM-2.0 standard, so called Virtual Platforms (VPs), are the goto
tool. Unfortunately, high target system complexity usually leads to reduced VP simulation performance.
Contemporary VPs often fail to deliver the performance required for executing realistic workloads in a reasonable
time frame. During target software development this is especially problematic as live software development requires
close to real time feedback from the simulation. In Continuous Integration (CI) scenarios slow VPs prohibit testing of
every commit and often only a daily CI run is possible, making it hard to pinpoint which exact change introduced
faulty behavior. To alleviate these problems we introduce SIM-V. SIM-V is a SystemC TLM-2.0 based RISC-V
simulator targeted for early software development and verification. Its high-performance RISC-V processor models,
based on our custom JIT engine FTL, enable the thorough verification of large target software stacks and by
supporting several open integration layers, they can easily be integrated into existing VPs. In the presented case
study, we show that SIM-V outperforms QEMU by a factor of 2x in both sequential and parallel execution, even
though SIM-V has to carry the SystemC kernel and annotates timing information. Through integration with our
open-source SystemC TLM-2.0 productivity library VCML, SIM-V offers Python scripting capabilities that enable
deep introspection and instrumentation for seamless integration into complex CI scenarios.
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I. INTRODUCTION

Figure 1. CI pipeline speed-up by using parallel SIM-V.

Full system simulators, so called Virtual Platforms (VPs), have become the de facto standard tool for early target
software development and verification before physical hardware prototypes become available. The need to
deploy VPs early in the design cycle has been increasing steadily over the last decades, as HW/SW system
complexity keeps rising. Keeping up with today’s tight product schedules without early simulator deployment
seems next to impossible.
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However, as target system complexity increases so does the complexity of the VP. This leads to simulation
performance issues, as traditional SystemC TLM-2.0 simulation is sequential and adding more components to
the simulation slows execution of the entire simulator. Especially, when used for software development VP
performance is critical, as close to real-time speed is required for a good VP user experience. Here, the
performance of the Instruction Set Simulator (ISS) plays a key role, as the execution of the target software
drives the entire simulation. Besides deploying a high-speed ISS, parallelization of the VPs processor core
models on multiple host CPU cores is required to increase performance.

Besides early software development, Continuous Integration (CI) is an important VP use case. Here, VPs can
show off their potential as they can be easily scaled given that enough compute resources are provided, while
physical hardware prototypes are usually only available in small quantities. Modern embedded systems execute
huge software stacks consisting of millions of lines of code. Executing comprehensive test suites for every
single commit is paramount for ensuring the early detection of bugs that compromise the system’s security and
safety. Again the performance of the ISS plays a critical role in achieving high simulation performance, which is
required to execute all tests in a reasonable amount of time. Besides good test coverage, high-performance VPs
also enable significant cost savings as they reduce the CI pipeline’s runtime, saving compute resources and
allowing developers to continue their work earlier by minimizing waiting time for CI results. This is depicted in
Figure 1.

SIM-V addresses the need for high-performance RISC-V Loosely-Timed (LT) SystemC TLM-2.0 VPs. It is
based on our custom Just-In-Time compilation (JIT) engine FTL, enabling high-simulation performance which
we demonstrate in the case study of this work, outperforming QEMU by 2x. FTL is designed with SystemC
TLM-2.0 in mind for easy integration into existing simulation environments. Furthermore, SIM-V is
parallelizable allowing the SystemC TLM-2.0 standard compliant simulation of multiple RISC-V processors on
multiple host processor cores. By integrating the FTL-based RISC-V processor model into our open-source
(Apache 2.0) Virtual Components Modeling Library (VCML) [1], deep introspection and instrumentation in
Python is enabled, as well as TLM transaction tracing, debugging with GDB, and VP control through a GUI.

II. RELATED WORK

Using ISSs to test and verify target software before physical hardware is available is well established. Several
ISSs for the RISC-V Instruction Set Architecture (ISA) exist. An overview that compares SIM-V to the existing
solutions described in the following is provided in Table 1. The Spike simulator is a functional, interpretative
ISS developed by the RISC-V community[2]. As it is an interpreter simulation performance is limited, but
sufficient for verifying smaller, bare-metal target software. It is a standalone simulator and does not offer a
SystemC TLM-2.0 integration. Therefore, integration into full system simulations is not easily possible.

Another prevalent simulator for the RISC-V ISA is Qemu[3]. It offers a very fast Dynamic Binary Translation
(DBT) ISS framework: the Tiny Code Generator (TCG). This enables high simulation performance. Qemu is a
monolithic simulator. The simulator target architecture is defined at compile time and cannot be changed.
Therefore, it can only simulate one target architecture at runtime, so mixed architecture simulation, e.g. rv32 +
rv64 or arm + rv64, is not possible. Furthermore, due to its monolithic architecture Qemu can not easily be
integrated into an existing simulation. It does not offer a SystemC TLM-2.0 integration. Qemu allows to execute
multi-core target systems in parallel on several host CPU cores through its MTTCG mode. It can also annotate
time to target instructions in ICOUNT mode. However, both modes are mutually exclusive. Therefore, the user
has to choose either higher performance through parallel execution or higher accuracy through instruction
counting. To tackle some of the described issues, GreenSocs has released its QBox integration of Qemu[4]. By
using QBox, Qemu can be integrated into a SystemC TLM-2.0 environment. However, due to the compile time
defined target architecture, processor models of different architectures are executed in different host processes.
This incurs an overhead. Also the limitations regarding ICOUNT and MTTCG mode still apply for each QBox
instance.
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ISS Tech. ISS
C++ API

SystemC
TLM-2.0
Compat.

Parallel
Sim. with
Timing

Behavior

Combine
Archs.

(e.g. ARM
+ RH850)

Integrate
into

existing
VP

Python CI
Scripting

GUI

Spike Interpret. ✅ ❌ ❌ ❌ ❌ ❌ ❌

QEMU TCG ❌ ❌ ❌ ❌ ❌ ❌ ❌

QBox
QEMU

TCG ❌ ✅ ✅ ✅ ✅ ❌ ❌

SIM-V Custom ✅ ✅ ✅ ✅ ✅ ✅1 ✅1

Table 1. SIM-V feature matrix.

SystemC has become the de-facto standard simulation environment for VPs in large part due to its easy to use
modeling primitives and its inheritance of the powerful C++ programming language. However, due to its
single-threaded nature, SystemC has become the performance bottleneck for modern multi-processor designs.
Various works exist that propose extending SystemC with capabilities to utilize multiple threads, processes or
even host computers to accelerate simulation speed.
In the sc_during[5] approach, the authors propose the introduction of a new API call that allows execution of
jobs on worker threads in an asynchronous manner while the main SystemC thread continues to operate. Such
an asynchronous approach is also taken by SystemC Link [6], first dividing the simulation manually into
segments and then spreading those over multiple processes or even hosts.
In contrast to these asynchronous approaches, Ventroux et al. [7] present a synchronous technique that enables
parallelization only of activities that occur at the exact same point in time, yielding a more accurate timed
simulator at the cost of reduced performance. Using extra tooling, simultaneous TLM quanta may be
parallelized as well.
Finally, the authors of CoMix [8] present an approach that loosens the timing constraint of SystemC to achieve a
better parallel utilization of the available host processors due to less synchronization overhead. Its lack of
support for TLM DMI makes this technology a difficult choice for general purpose VPs, however.

III. SIM-V

A. Fast Translator Library (FTL)

Figure 2. FTL architecture.

FTL is the origin of the high simulation performance of SIM-V. It enables rapid development of processor
models, thanks to its intuitive API and powerful tooling. An overview of FTL’s architecture is provided in
Figure 2. Based on an instruction set description language, framework models can be generated that serve as a
starting point for model development. Commonly required functionality, such as decoders, code generators, JIT
caches is already present in the initial design, allowing engineers to immediately start working on the important
part: the processor behavior model which describes the processor state and the behavior of its instructions.
Instructions are described in an easy to use C++-based API, giving engineers maximum control and flexibility
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when modeling their behavior. This process has been conducted for SIM-V, yielding one of the fastest processor
models for RISC-V available today in record time.
The finished processor model offers a multitude of integration possibilities, for example as a standalone
simulator for executing bare-metal programs, or as a SystemC module within a full TLM-2.0-based VP.

B. Integrating FTL Processor Models into Virtual Platforms

Even though a fast processor model is indispensable for high-performance VPs, it is only of limited use by
itself. Therefore, it is important to provide free and open integration options to enable seamless integration of
the processor model into an existing simulation environment. An overview of the available integrations for
FTL-based processor models, such as the ones integrated in SIM-V, is provided in Figure 3.

Figure 3. Open integration options for FTL-based processor models.

As FTL was designed with SystemC TLM-2.0 in mind, it is no surprise that it supports integration into standard
Accellera SystemC TLM-2.0, which only enables sequential execution by default. Beyond that, a parallel
integration with standard SystemC TLM-2.0 is provided, which in terms of technology is similar to the work
presented in [5].

Besides the integration into standard SystemC TLM-2.0, an integration into the open-source OpenCpuX
interface is provided, which enables the integration into non-SystemC as well as SystemC simulation
environments[9]. This integration also allows for the parallelization of multiple target CPU cores on multiple
host CPU cores.

Finally, an integration into our open-source SystemC TLM-2.0-based productivity library VCML is provided[1].
Besides the parallel execution of multiple FTL-based processors, it also offers other advantages. VCML comes
with a GDB server for easy debugging of the resulting VP, which can also be controlled by a Python scripting
interface. In addition, VCML provides deep instrumentation and analysis capabilities driven by our PyVP CI
scripting framework. Through PyVP many points of VP execution can be instrumented such as reaching specific
functions in target software execution, accessing specific registers and memory, or reaching pre-defined points
in simulation time. From there the state of the VP can be manipulated, e.g. for fault injection testing.
Furthermore, VCML supports tracing of all TLM transactions on the buses of the VP as well as attaching our
open-source GUI ViPER to the VP for interactive use[10].

IV. CASE STUDY

A. The SIM-V Virtual Platform
The SIM-V Virtual Platform embeds several FTL-based RISC-V processor models into multi-processor design
with a rich peripheral ecosystem providing various memories, bridges, I/O controllers and coprocessors. It is
intended to replicate the physical memory layout to QEMU’s virt platform, allowing efficient reuse of existing,
unmodified low-level software. The composition of SIM-V’s major components is presented in Figure 4.
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Figure 4. SIM-V VP Architecture.

While SIM-V can run any binary software compiled for the RISC-V architecture, it is most commonly used with
a Linux kernel for rich operating systems and demanding 3d accelerated GPU graphic workloads. On the low
end of the embedded spectrum, SIM-V targets the Zephyr real time operating system as well as plain bare-metal
programs such as those that are commonly used with microcontrollers.
Interaction with the simulator is possible through a large variety of supported first and third-party tools, such as
the ViPER GUI for inspecting the entire SystemC module hierarchy as shown in Figure 5. ViPER enables
fine-grained control over the simulation progress and offers non-intrusive deep introspection into the details of
each hardware model present in the design, such as MMIO registers, internal memories and configuration
properties. While the simulation is running, ViPER offers convenient I/O terminals for all serial UARTs, as well
as VNC-based screens for graphical login sessions.

Figure 5. SIM-V ViPER GUI.

Furthermore, well known debugger integrations are supported, such as GDB. Given its widespread use in the
industry, SIM-V’s non-intrusive hardware-level debugger integration is expected to immediately feel familiar to
most engineers, whether they are using GDB directly or via one of its many graphical frontends, such as Eclipse,
for example.
Finally, SIM-V offers a rich scripting frontend for interfacing with the simulation from a Python environment.
This is expected to be especially useful when operating SIM-V from a CI-environment, for example for testing
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correct operation of a piece of software, e.g. a driver or a single interrupt routine. The Python script is capable of
controlling simulation progress, investigating registers, setting breakpoints and investigating I/O from various
peripherals, such as UARTs, Ethernet and CAN controllers. Finally, the scripting integration also enables
fault-injection for improving test coverage of error handling code paths that are normally not executed.

B. Dhrystone Benchmark

Figure 6. Dhrystone Benchmark SIM-V vs QEMU

To demonstrate the performance of our FTL-based SIM-V simulator, the dhrystone benchmark is executed for
different RISC-V processor cluster configurations and simulation modes. For comparison, the byte identical
binary is executed on the same configurations using Qemu. A Ryzen 5 3600 machine with 64GB of RAM
running CentOS 7 was used as the simulation host. An overview of the MIPS performance results is provided in
Figure 6. Here, the executed instructions on all processor cores of the simulation are divided by the required
wall-clock time of the entire simulation. This yields the MIPS result for the entire simulation. The benchmarked
RISC-V CPU cluster configurations are 32-bit RISC-V single-, dual- and quad-core, as well as 64-bit RISC-V
single-, dual-, and quad-core. Two simulation modes are measured: sequential and parallel execution. It is
important to note that Qemu is not capable of annotating time to instructions in parallel execution mode while
SIM-V is. Hence, Figure 6 distinguishes between timed sequential execution and timed/untimed parallel
execution. Furthermore, SIM-V carries a standard Accellera SystemC kernel, leading to a slowdown in
comparison with Qemu.
Even though SIM-V is weighed down by the overhead of the SystemC simulation, it still outperforms Qemu by
1.97-2.64x in sequential execution. In parallel mode, SIM-V still outperforms Qemu by a factor of 1.41-2.13x,
even though Qemu does not annotate timing while SIM-V does. Interestingly, Qemu performance deteriorates
when simulating a 64-bit RISC-V system.

V. Conclusion

In this paper, we presented our RISC-V functional simulator SIM-V. SIM-V uses fast ISSs built using our
custom JIT engine FTL. It was shown how FTL-based processor models may be integrated into existing
simulation environments using a variety of free and open-source interfaces. By integrating with our open-source
SystemC TLM-2.0 productivity library VCML, VPs with FTL-based processor models can be easily
instrumented and analyzed. This is especially useful for CI, where these technologies enable significant cost
savings by reducing CI pipeline runtime and thus minimizing developer idle times.
To substantiate this claim, we demonstrated the reachable performance of FTL-based processor models in a
representative case study using our SIM-V simulator. For comparison, the widely adopted Qemu simulator was
selected. Here, speedups of up between 1.41-2.64x were demonstrated.
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