
A Reconfigurable Interface Architecture to Protect
System IP

Dr. Arshad Riazuddin and Dr. Shoab A. Khan
Center for Advanced Research in Engineering

Problem

• Information leakage through physical interface
• Such an attack can be intelligent or brute force
• This information can be used to decipher the Intellectual Property (IP)

of the system
• How to solve this problem?

Example System

D
M

A

CMOS
Sensor

Audio
I/F

Boot
FLAS

H

Keypad

Display

System
Memory

Interface
FPGA

Bluetooth/
Wi-Fi

FLASH
CPU

AXI FLASH
Contr.

DDR
Contr.

AXI-APB
Bridge

AXI

Display
Controller

I2C

I2S

HMI

SPI

SPI

A
PB

A
XI

AXI

AX
I

AXI3G/LTE
Modem

Air
Interface

Air
Interface

AX
I

Leakage
of Information

through
Physical I/F

Leakage of
Information

through
Physical I/F

Proposed Solution

• How do we protect IP of a system?
• Make the interconnect behavior change over time

• An “on the fly” reconfigurable interface
• The architecture allows

• Change of interface architecture
• Interface can be changed at a variable rate

• Supports Standards and Proprietary Interfaces
• Independent of any ASIC/FPGA architecture

System with Reconfigurable Interface (RI)

Reconfigurable Interface Architecture

• Reconfigurable Interface
• Programmable Sequencer
• R/T Data Module
• Variable Interface Change

Sequencer

Clock
generator

S/P

clk

Program
memory

Interface
registers

Controller

P/S

Control Data

Timer

AXI
Slave

I/F

Interrupt

LFSR
Mem

RT Data
Module

Sequencer Architecture

• Sequencer consists of
• Controller
• Program Memory
• Timer
• Interface Registers

Sequencer OPCODES

Opcode Description

No Operation (NOP) No Operation

Sample Flag (SAMPF) Wait for an input flag to be equal to a particular value, before
going to next instruction

Compare Flag
(CMPF)

Compare the flag, before going to next instruction

Jump
Unconditionally

(JUMP)

Jump unconditionally to the address specified in the control
word

Jump Conditionally
(JUMPC)

Jump conditionally to the address specified in the control
word

Sequencer Control Word

Bits Description

31:29 Opcode

28:21 Jump address used in jump instruction

20:0 Wait for conditional flags which are used to move to the next
instruction in the sequence

Description of Flags in Seqeuncer
Flag Bit Direction of Flag Description

F20 Input Receiver Shift Enable

F19 Output Sequencer Busy

F18 Output Interrupt Request

F17 Output Load Timer

F16 Input Clock Pulse

F15 Output Clock Generator Enable

F14 Output Transmitter Enable

F13 Output Receiver Enable

F12 Input Terminal Counter Timer

F11 Input Transmitter Shift Done

F10 Input Receiver Shift Done

F09 Input Transmitter Shift Enable

F08 Output Serial Data Output Enable

F07 Output Serial Data Input Enable

F06 Output Serial Clock Output Enable

F05 Output Serial Chip Select

F04 Input Transmitter Shift Register Empty/Receiver Shift Register Full

F03 Input Valid Start Bit

F02 Output Interface Select Bit 2

F01 Output Interface Select Bit 1

F00 Output Interface Select Bit 0

FLAG Description

Timer

Sequencer

Clock
generator

S/P

clk

Program
memory

Interface
registers

Controller

P/S

Control Data

Timer

AXI
Slave

I/F

Interrupt

LFSR
Mem

RT Data
Module

Program Memory

Sequencer

Clock
generator

S/P

clk

Program
memory

Interface
registers

Controller

P/S

Control Data

Timer

AXI
Slave

I/F

Interrupt

LFSR
Mem

RT Data
Module

Interface Registers

Sequencer

Clock
generator

S/P

clk

Program
memory

Interface
registers

Controller

P/S

Control Data

Timer

AXI
Slave

I/F

Interrupt

LFSR
Mem

RT Data
Module

R/T Data Module

Sequencer

Clock
generator

S/P

clk

Program
memory

Interface
registers

Controller

P/S

Control Data

Timer

AXI
Slave

I/F

Interrupt

LFSR
Mem

RT Data
Module

Variable Interface Change

• Sequencer allows us to encode different interfaces
• How to hop between the various interfaces

• To protect IP disclosure through hardware snooping

• A mechanism has been developed
• Variable Interface Change

• Mechanism allows

Variable Interface Change (2)

LFSR

Seed

Address

Memory

1K x
64

LFSR

LFSR

LFSR

LFSR

8-bits8-bits 16-bits

Bus IF
CodeResvd.Programmable I/F

Params
Clock
Freq.

Delay
Freq.

Clock
Freq.

8-bits 21-bits 3-bits

Transaction
Transaction

Transaction
Transaction
Transaction

Transaction

Transaction
Location
Details

Resvd.Transaction Location Address

10-bits 46-bits

LFSR Location
Details

Transaction

8-bits

LFSR
ID

LFSR Transaction Word

Bits Description

63:56 RI Bus interface code

55:53 Reserved

52:32 Programmable I/F Parameters

31:24 Frame generation frequency. The frequency of the frame
generation, e.g. for ASP. The frame generation depends on the word
width of the interface.

23:8 RI interface frequency. The frequency at which the RI interface is
running. It is some multiple of the clock frequency at which the
entire RI module is running.

7:0 Delay between back to back transaction

SPI Write Code Flow

IDLE
ADDRESS

CMPF

NOP

clock_pulse

~clock_pulse

CMPF

~tx_shift_done

tx_shift_done

Address & Data Phase of SPI

start_pulse
Start Pulse comes from the interface
registers. This makes the sequencer
address go to the start of the SPI
microcode routine.

Wait for Clock Pulse from clock
generator in order to align the control
and data signals properly with the SPI
clock.

Send out the address location over
the SPI data bus, followed by the
data. When all the data bits have
been shifted out this phase is done.
The size of this field is programmable
through the interface registers .

JUMP

SPI Write Micro-Code

F
2
0

F
1
9

F
1
8

F
1
7

F
1
6

F
1
5

F
1
4

F
1
3

F
1
2

F
1
1

F
1
0

F
0
9

F
0
8

F
0
7

F
0
6

F
0
5

F
0
4

F
0
3

F
0
2

F
0
1

F
0
0

OpcodeMem.
Addr.

Jump
Addr. FLAGS

0x0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1NOP0x90

0x0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1CMPF0x91

0x0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1CMPF0x92

0x0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1JUMP0x93

Start of routine

Wait and Compare for Clock Pulse

Wait and Compare for Transmit Shift Register Done

Jump to address 0x0 and wait for trigger of next cycle

SPI Interface Code

SPI Write Cycle

SPI Read Code Flow
IDLE

ADDRESS

CMPF

NOP

CMPF

CMPF

clock_pulse

rx_shift_done

~rx_shift_done

clock_pulse

~clock_pulse

CMPF

~tx_shift_done

tx_shift_done

~clock_pulse

Read Data Phase of SPI

NOP

Address Phase of SPI

start_pulse
Start Pulse comes from the interface
registers. This makes the sequencer
address go to the start of the SPI
microcode routine.

Wait for Clock Pulse from clock
generator in order to align the control
and data signals properly with the SPI
clock.

Send out the address location over
the SPI data bus. When all the data
bits have been shifted out this
phase is done. The size of this field
is programmable through the
interface registers.

Receive the data from the SPI
slave. Once the Receive shift
register is full from the requested
data this phase is done. The size of
this field is programmable through
the interface registers.

JUMP

SPI Read Micro-Code

F
2
0

F
1
9

F
1
8

F
1
7

F
1
6

F
1
5

F
1
4

F
1
3

F
1
2

F
1
1

F
1
0

F
0
9

F
0
8

F
0
7

F
0
6

F
0
5

F
0
4

F
0
3

F
0
2

F
0
1

F
0
0

OpcodeMem.
Addr.

Jump
Addr. FLAGS

0x0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1NOP0xC0

0x0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1CMPF0xC1

0x0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1CMPF0xC2

0x0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1CMPF0xC3

0x0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1CMPF0xC4

0x0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1JUMP0xC5

Start of routine

Wait and Compare for Clock Pulse

Wait and Compare for Transmit Shift Register Done

Wait and Compare for Receive Shift Register Done

Wait and Compare for Clock Pulse

Jump to address 0x0 and wait for trigger of next cycle

SPI Interface Code

SPI Read Cycle

UART Transmitter Code Flow
IDLE

ADDRESS

CMPF

NOP

CMPF

JUMPC

tx_end_flag

bit_clk

~bit_clk

tx_shift_reg_en

~tx_shift_reg_en

tx_shift_done

~tx_end_flag

Transmit each bit of data
aligned with bit clock

start_pulse
Start Pulse comes from the interface
registers. This makes the sequencer
address go to the start of the UART
TX microcode routine.

Wait for Transmit Shift Register
enable signal.

JUMP

NOP

Repeat Loop until the
entire data written in the
transmit data register is

transmitted out

UART Transmitter Micro Code

F
2
0

F
1
9

F
1
8

F
1
7

F
1
6

F
1
5

F
1
4

F
1
3

F
1
2

F
1
1

F
1
0

F
0
9

F
0
8

F
0
7

F
0
6

F
0
5

F
0
4

F
0
3

F
0
2

F
0
1

F
0
0

OpcodeMem.
Addr.

Jump
Addr. FLAGS

0x0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1NOP0x60

0x0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1CMPF0x61

0x0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1NOP0x62

0x0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1CMPF0x63

0x61 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1JUMPC0x64

0x0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1JUMP0x65

Start of routine

Wait and Compare for Transmit Shift Register Enable

No Operation

Wait and Compare for Bit Clock

Wait and Transmission End Flag and Jump to address 0x61

Jump to address 0x0 and wait for trigger of next cycle

UART Interface
Code

UART Transmitter

Combination SPI and ASP

Conclusion

• A novel on the fly reconfigurable interface was presented
• Which can be used to guard against IP leakage through eavesdropping on

physical connections in a system or integrated circuit

• A second contribution of our concept is that the reconfiguration is
independent of any underlying FPGA technologies

Questions

• Any Questions?

	A Reconfigurable Interface Architecture to Protect System IP
	Problem
	Example System
	Proposed Solution
	System with Reconfigurable Interface (RI)
	Reconfigurable Interface Architecture
	Sequencer Architecture
	Sequencer OPCODES
	Sequencer Control Word
	Description of Flags in Seqeuncer
	Timer
	Program Memory
	Interface Registers
	R/T Data Module
	Variable Interface Change
	Variable Interface Change (2)
	LFSR Transaction Word
	SPI Write Code Flow
	SPI Write Micro-Code
	SPI Write Cycle
	SPI Read Code Flow
	SPI Read Micro-Code
	SPI Read Cycle
	UART Transmitter Code Flow
	UART Transmitter Micro Code
	UART Transmitter
	Combination SPI and ASP
	Conclusion
	Questions

