

EUROPE

MUNICH, GERMANY DECEMBER 6 - 7, 2022

SAWD: Systemverilog Assertions Waveform-based Development tool

Ahmed Alsawi

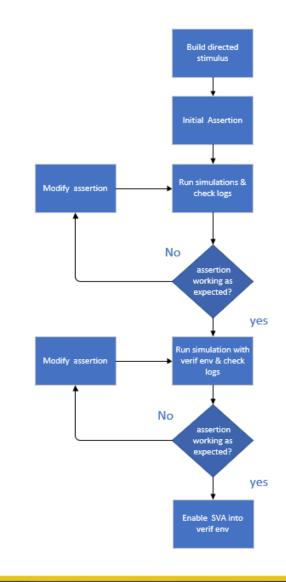
QT Technologies Ireland

Agenda

Motivation

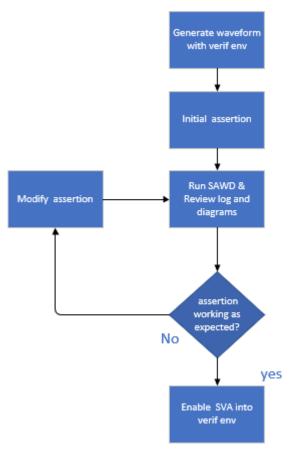
STEMS INITIATIVE

- Waveform-based development methodology
- Implementation
 - SVA Frontend
 - Waveform Frontend
 - Evaluation engine
- Graphical user interface


- Example
- Conclusion

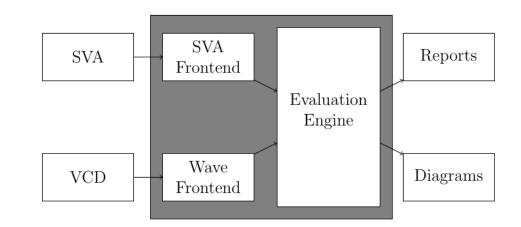
Motivation

- Systemverilog concurrent assertions provide a concise and complicated syntax to define temporal expressions
- The development process can take several iterations to modify, run, and analyze to verify the correctness of an assertion

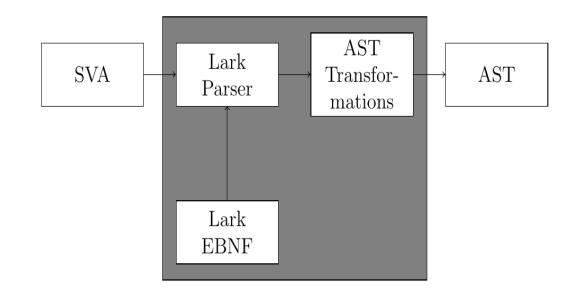


Waveform-based development methodology

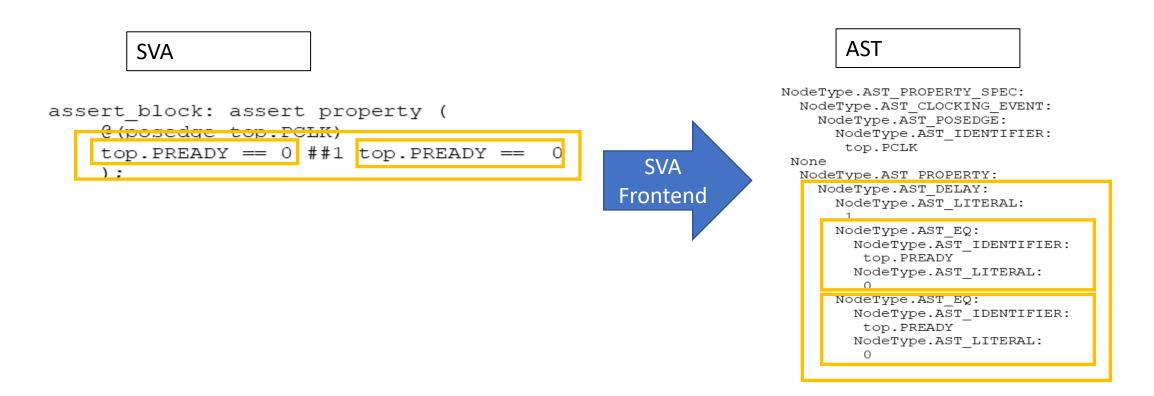
- Evaluating SVA on simulator-agnostic waveform
- Generating failing/passing/vacuous reports
- Generating diagrams for evaluation attempts



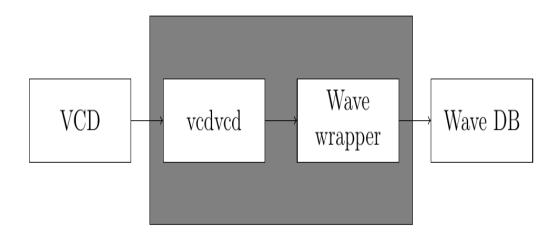
Implementation - Architecture


- SVA frontend parses SVA to generate Abstract Syntax Tree (AST)
- Wave Frontend parses VCD to generate Wave DB
- Evaluation engine uses AST and wave DB to generate SVA reports and diagrams.

Implementation - SVA Frontend

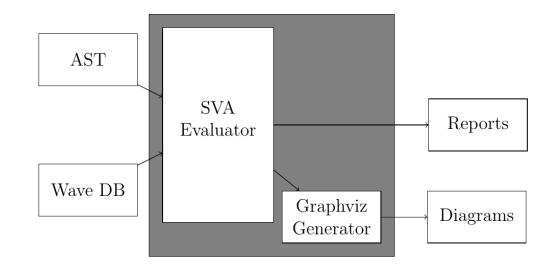

- Lark parser provides lexical analysis and parser by reading Lark EBNF to generate a parse tree
- AST transformations are custom transformations implemented to transform the parse tree to AST

Implementation - AST Transformations



Implementation - Wave Frontend

- Wave frontend uses python package vcdvcd to parse vcd file
- Wave wrapper is an abstraction layer to provide wave DB to the evaluation engine



Implementation - Evaluation Engine

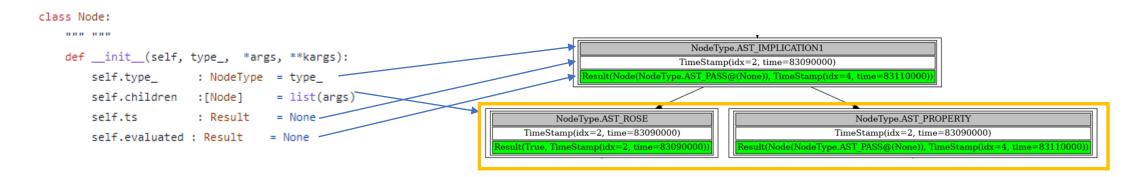
- The SVA evaluator processes AST and wave DB to generate reports for each evaluation attempt
- The Graphviz generator uses timeaware expression and Graphviz utility to generate attempts diagram

Implementation - Reports

14:23:31 engine INFO Eval attempt @(TimeStamp(idx=0, time=5)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=1, time=15)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=1, time=15)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=1, time=15)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=2, time=25)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=2, time=25)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=3, time=35)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=3, time=35)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=4, time=45)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=4, time=45)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=5, time=55)) 14:23:31 engine INFO Result(Node(NodeType.AST PASS@(None)), TimeStamp(idx=6, time=65)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=6, time=65)) 14:23:31 engine INFO Result(Node(NodeType.AST PASS@(None)), TimeStamp(idx=7, time=75)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=7, time=75)) 14:23:31 engine INFO Result(Node(NodeType.AST PASS@(None)), TimeStamp(idx=8, time=85)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=8, time=85)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=9, time=95)) 14:23:31 engine INFO Eval attempt @(TimeStamp(idx=9, time=95)) 14:23:31 engine ERROR Result(Node(NodeType.AST FAIL@(None)), TimeStamp(idx=9, time=95)) 14:23:31 sawd INFO Stats: Attempts:10 Pass:3 Fail:7 vacuous:0

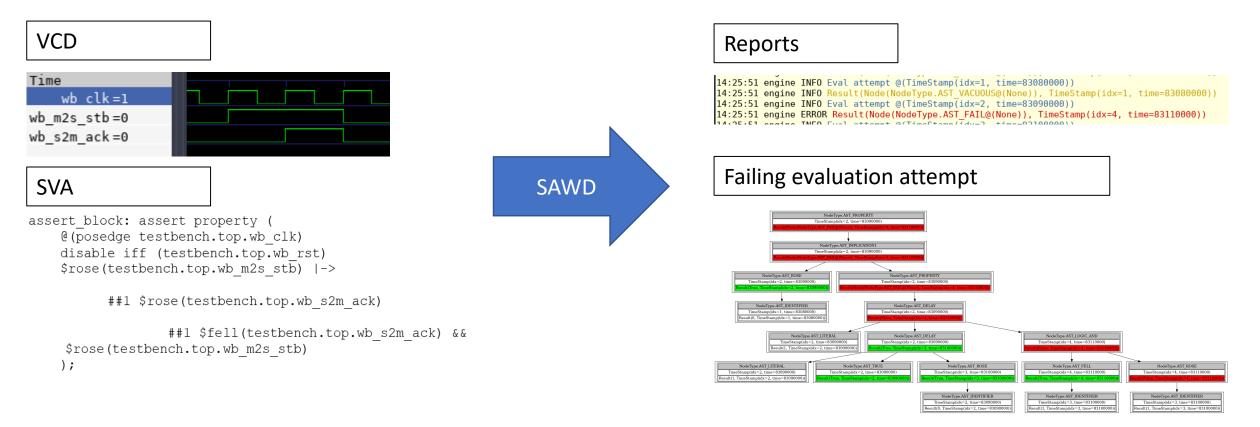
disabled:0

Attempts report


Stats report

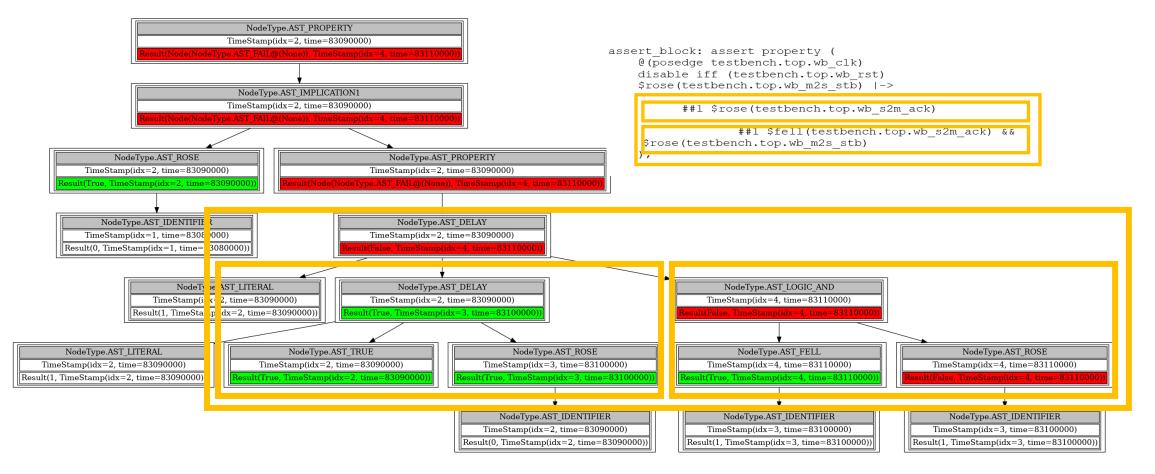
Implementation - Time-Aware Expression Tree

 The time-aware expression tree is a data structure to keep track of start and end timestamps and expression results

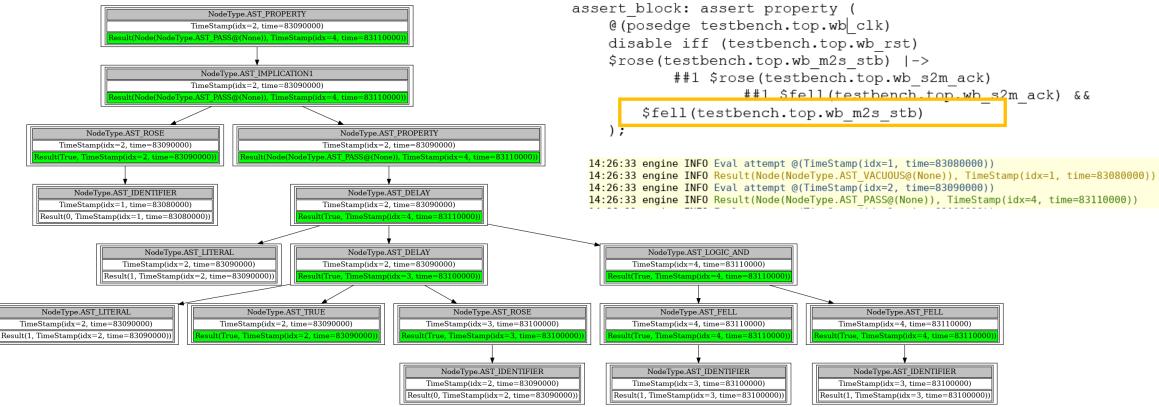

Graphical user interface

- SAWD Graphical User Interface uses PyQt5
 - Path to VCD file
 - SVA editor
 - Evaluation attempts result
- The evaluation attempts list is clickable to open evaluation attempt diagram in a separate window.

dump.vcd				
@(posedge	ssert property (op.PCLK) == 0 ##1 top.PREA[Y == 0		
Deeulk/Nede/N		Run		
	deType.AST_FAIL@(N	one)), TimeStamp(ic		
Result(Node(N Result(Node(N	deType.AST_FAIL@(N deType.AST_FAIL@(N	one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic	dx=1, time=15)) dx=2, time=25))	
Result(Node(N Result(Node(N Result(Node(N	odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N	one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic	dx=1, time=15)) dx=2, time=25)) dx=3, time=35))	
Result(Node(N Result(Node(N Result(Node(N Result(Node(N	odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N	one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic	dx=1, time=15)) dx=2, time=25)) dx=3, time=35)) dx=4, time=45))	
Result(Node(N Result(Node(N Result(Node(N Result(Node(N Result(Node(N Result(Node(N	odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_PASS@(odeType.AST_PASS@(one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic None)), TimeStamp(i None)), TimeStamp(i	dx=1, time=15)) dx=2, time=25)) dx=3, time=35)) dx=4, time=45)) idx=6, time=65)) idx=7, time=75))	
Result(Node(N Result(Node(N Result(Node(N Result(Node(N Result(Node(N Result(Node(N Result(Node(N	odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_FAIL@(N odeType.AST_PASS@(one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic one)), TimeStamp(ic Vone)), TimeStamp(i None)), TimeStamp(i None)), TimeStamp(i	dx=1, time=15)) dx=2, time=25)) dx=3, time=35)) dx=4, time=45)) idx=6, time=65)) idx=7, time=75)) idx=8, time=85))	



Example – Initial SVA for wishbone stb/ack


Example - Failing Attempt review

Example - After changing \$rose to \$fell

SYSTEMS INITIATIVE

Conclusion

- SAWD provides a tool to develop SVA by evaluating SVA on VCD directly without rerunning simulations
- The results show SVA evaluation reports and generated diagrams for passing/failing attempts
- Advantages
 - Simulator-agnostic and using only open-source packages
 - Faster SVA testing and shorter turn-around time
 - Help understand assertion evaluation attempts

Questions?

Contact Ahmed Alsawi at aalsawi@qti.qualcomm.com

