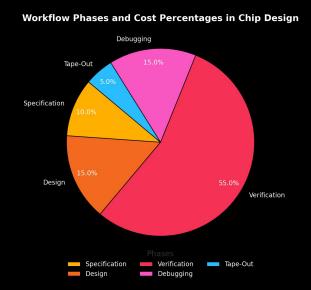


Agentic Al for Chip Design

Challenges in Design and Verification

We observe the following problems after working with leading companies in chip design and verification:

- Increasing complexity of RTL design and testbench.
- Lengthy cycles and verification bottlenecks.
- Limited scalability with traditional methods.
- Cost and time pressures for first-time silicon success.


ChipAgents: Al Agents and large language models for IC

We propose novel solutions of **specialized AI Agents and large language models** to transform IC into language-based AI design: using **natural language and AI** for design, debugging, and verification.

- Reduce 80% Development Time
- Increase Accuracy and Precision
- Optimization, Predictive Analysis and Simulation
- Personalization and Customized Designs

Specific Breakdown of Net Time Saved

- **Specification:** 75% of time, net 7.5%
- **Design:** 80% of time, net 12%
- **Verification:** 90% of time, net 49.5%
- **Debugging:** 80% of time, net 12%
- Tape-Out: absorbed into early steps.
- Total Time Saved: ~80%

Specification-to-RTL Generation: State-of-the-Art Agentic Al Performances

Approach	VerilogEval-Human Pass Rate	VerilogEval-v2 Pass Rate
Generic LLM (GPT-4o)	51.3	N/A
Claude-3.5-Sonnet	75.0	72.4 (113/156)
VerilogCoder (NVIDIA)	N/A	94.2 (147/156)
MAGE	94.8	95.5 (149/156)
ChipAgents (Ours)	99.4 (155 /156)	97.4 (152 /156)

Seeking Alpha^α

ChipAgents Achieves State-of-the-Art Results on NVIDIA's VerilogEval Benchmark

seekingalpha.com