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Outline
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● State-of-the-art survey of ML applications in verification

● Stimulus Generation and Optimization using Machine Learning Predictors

● Automatic Bug Classification

● Automatic Bug Insertion using LLMs

● Coverage Acceleration

● Assertion Generation using LLMs

● Test Bench Generation using LLMs



State-of-the-art Survey of ML applications in verification

Review
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Applications of ML to Hardware Verification
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Rich Data Set Available in Functional Verification
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PLANNING

Verification Plan

COVERAGE

Coverage Analysis

SETUP

Verification 
Environment

REGRESSION

Simulation & Formal

DEBUG

Debug HDL & 
Environment

Verification
Cycle

Functional verification generates rich datasets ideal for machine learning applications.

Step Data Format

Simulation Waveforms Table

Simulation Test vectors Text, Table

Simulation Test results Text, Table

Simulation Logs Text

Simulation Coverage Table

Formal Design Code

Formal Proof results Table

Formal Traces Text, Table

Formal Constraints Code

Formal Assertions Code

Debug Trace logs Text, Table

Debug State dumps Table

Debug Breakpoint Table

Debug Testbench Code

Functional Specifications
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Motivation and Research Questions?
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● Enhancing Functional Verification Efficiency

○ How to reduce simulation time using ML predictions?

○ Can ML optimize test generation resources?

● Leveraging Functional Verification Data and Managing Complexity

○ How to leverage ML to extract value out of functional verification data?

○ How to handle varying design sizes and complexities?

● Tailoring ML Approaches for Verification Tasks

○ Which ML architectures best suit different verification tasks?

○ Can ML assess verification completeness?

○ How to validate ML-based verification results?
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State-of-the-art survey of ML applications in verification
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Categories Applications

Requirement engineering

Code generation from requirement specs

LLM-aided testbench generation

Automatic assertion generation from specifications

Verification Acceleration

Stimulus generation and optimization

Coverage-directed test generation (CDTG)

ML-guided random test generation

Coverage Closure Last-mile coverage optimization

Bug detection and localization 
ML-guided bug triage

Multimodal bug analysis (waveforms, design architecture, reports)

Formal verification
Assertion checking optimization

Property verification assistance



Stimulus Generation and Optimization using Machine 
Learning Predictors
Methodology and experimental results
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Motivation

● Functional verification consumes >55% of chip 
design resources

● Simulation-based verification faces 
exponentially growing input space

● Random tests often redundant, directed tests 
need extensive manual effort

● Coverage remains a major challenge

● ML-guided stimulus generation promises faster 
coverage with fewer resources

9
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Methodology: Multi-Level Stimulus Optimization
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1. Test Level Stimulus Optimization

2. Transaction Level Stimulus Optimization
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Methodology: Multi-Level Stimulus Optimization
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Test Level Stimulus Optimization

Control knobs provide optimization that influence stimulus generation. 
The ML model predicts functional coverage based on knob settings. 
Redundant tests are pruned while continuously refining the 
predictions through retraining.

Transaction Level Stimulus Optimization

● Online Transaction Pruning evaluates transactions during 
simulation. When the ML model identifies a transaction as unlikely 
to improve coverage, it is pruned.

● Offline Directed Sequence Generation uses ML to construct optimal 
transaction sequences before simulation. It predicts combinations 
of transactions that will improve coverage.
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Methodology: Multi-Level Stimulus Optimization
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Test Level Stimulus Optimization

● Control through test knobs

● ML prediction of functional coverage

● Pruning of redundant tests

● Continuous model retraining

Transaction Level Stimulus Optimization

Online Transaction Pruning

● Real-time processing during simulation
● Immediate pruning of non-beneficial 

transactions

Offline Directed Sequence Generation

● ML-guided sequence creation before 
simulation

● Optimized for coverage improvement
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Experimental Setup
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DUT: Quad-core MESI-based Cache design

● L1 cache (private to each core)
● Shared L2 cache
● MESI cache coherency protocols
● 4-way cache associativity

Testbench: UVM compliant testbench

Libraries
● Keras
● Scikit-Learn

ML Models
● Deep Neural Network (DNN)
● Random Forest (RF)
● Support Vector Machine (SVM)
● Long Short Term Memory (LSTM)
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Test Level Stimulus Optimization - Flow
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1. Run random tests with randomized test knobs

2. Collect coverage data and logs as training data

3. Extract features from test knobs for ML model

4. Train model to predict coverage from knob settings

5. Use model to predict coverage for new test knobs

6. Prune tests predicted to hit only covered bins

7. Retrain model with new simulation data

8. Repeat until full coverage achieved
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Test Level Stimulus Optimization - Test Coverage Prediction
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Will a test improve verification coverage?

We use a probability-based classification with two thresholds (α, β).

1. The ML model (Random Forest) outputs a probability p of each coverage bin 
hit by a test.

2. Use 02 threshold values 0 < β < α < 1, classify each bin into 03 categories:

● Decided-1 (Covered): if p ≥ α (high confidence bin will be hit)
● Decided-0 (Not Covered): if p ≤ β (high confidence bin won't be hit)
● Undecided: if β < p < α (model uncertain about coverage)

3. Make pruning decisions based on classifications:

● Prune test if high % of decided bins and decided-1 bins already covered
● Run test if it has decided-1 predictions for uncovered bins
● Run test if high % of undecided bins (suggests novel coverage potential)
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Test Level Stimulus Optimization - Results
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Group A (827 bins, 6 metrics)

Strong correlation with test knobs

Initial training achieved <10% error with just 50 
random tests

Baseline: Required 587 tests for full coverage

With ML optimization:

● Random Forest: 129 tests (78% reduction)

● DNN: 137 tests (77% reduction)

● SVM: 185 tests (68.5% reduction)

Group B (911 bins, 2 metrics)

Poor correlation with test knobs

High classification error even after intensive training

ML optimization showed minimal improvement

Led to development of Transaction Level approach
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Test Level Stimulus Optimization - Group A vs. Group B
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Functional coverage closure for 02 groups with test level optimization.

1. Plot on the left shows the coverage closure compressed towards left for covergroup A
2. Plot on the right shows no significant left compression for covergroup B.

Observation:

The results reveal limitation of test level optimization 

It confirms the need for transaction level optimization for coverage metrics in covergroup B.
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Transaction Level Stimulus Optimization - Flow
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Phase 1 - Initial Training

1. Run random simulations and collect transaction data
2. Extract features (transaction attributes + context/history)
3. Train ML model to predict coverage impact 

Phase 2 - Coverage Optimization

Online Transaction Pruning

1. Generate random transactions
2. Predict coverage impact before simulation
3. Prune transactions unlikely to improve coverage
4. Simulate remaining transactions

Offline Directed Generation

1. Use ML to predict high-impact transaction sequences
2. Generate complete transaction sequence
3. Simulate entire sequence at once
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Transaction Level Stimulus Optimization - Flow
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FSM Transition Coverage

Input Features

● Transaction attributes (core, request type, address)
● Current state information

ML Model

● Predicts next state based on current state + transaction
● Used to forecast state transitions

Coverage Strategy

● Online Pruning: Filter transactions unlikely to create 
new transitions

● Offline Generation: Use graph-based approach with 
Transaction Attribute (TA) transition graph.

Path Analysis
● Path 1 Total Cost: 2.4 (Recommended)
● Path 2 Total Cost: 2.6

Transaction Attribute Transition Graph
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Transaction Level Stimulus Optimization - Flow
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Non-FSM Event Coverage (e.g., Cache Hits)

Input Features

● Sequence of w consecutive transactions (window size)
● Each transaction's attributes

ML Model

● LSTM (Long Short-Term Memory) handles sequence 

dependencies

● Predicts if events of interest will occur

Coverage Strategy

● Online Pruning: Examine w-transaction windows for event prediction
● Offline Generation: Generate complete sequences targeting uncovered 

events
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Transaction Level Stimulus Optimization - Results
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FSM Transition Coverage Results

Baseline Random Testing:

● 50K cycles to reach 80% coverage

● Additional 65K cycles needed for remaining 
20%

● Shows high redundancy in conventional 
approach

Optimization Results

FSM (MESI State Transitions)

Online Transaction Pruning: • 48% reduction in 
simulation cycles • 57% reduction in total CPU time

Offline Sequence Generation: • 55% reduction in 
simulation cycles • 69% reduction in total CPU time

Non-FSM (Cache Hit Events)

Online Transaction Pruning: • 55% reduction in 
simulation cycles • 65% reduction in total CPU time

Offline Sequence Generation: • 61% reduction in 
simulation cycles • 72% reduction in total CPU time
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Transaction Level Stimulus Optimization - Results
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Observations:

● DNN and Random Forest achieve nearly identical coverage acceleration, reducing simulation cycles by 
approximately 48-55%.

● Random Forest showed better training efficiency vs DNN.

FSM transition coverage through DNN classifier FSM transition coverage through random forest classifier
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Transaction Level Stimulus Optimization - Results
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CPU runtime for random forest-based technique
(FSM transition overage)

CPU runtime for LSTM-based technique
(non-FSM event coverage)

Observations:

Coverage closure with transaction pruning and directed sequence generation noticeably reduce CPU runtime.
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Conclusion

24

● Transaction-level ML optimization achieves 70% reduction in verification time

● Both online pruning and offline generation prove effective for coverage improvement

● Random Forest and LSTM models outperform traditional approaches

● Method integrates easily with existing verification environments

● Results demonstrate clear path forward for ML in verification



Automatic Bug Classification

Overview
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Motivation
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When failures encountered, DV engineers must figure out the reason(s)
● Multi-step process
● Bug triage: Evaluating, bucketing, and prioritizing bugs
● Root-Cause Analysis: Find the root-cause of a bug

Artificial Intelligence
● In verification, AI has enabled: Faster coverage closure, More efficient stimulus generation
● AI for bug triage and root-cause analysis is still in its infancy
● Analyzes data from current, concurrent, and previous projects

Reusability and Extensibility

● Reusability: Allowing solutions to be replicated across various scenarios, saving time and 
resources

● Extensibility: Enabling easy modifications and improvements, helping solutions evolve to meet 
future requirements

● Prioritizing reusability and extensibility can significantly enhance the applicability of verification 
research to real-world projects
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A failure triage engine based on error trace signature extraction - Z. Poulos et al.

● Bug triage
● FAE: Autoencoder-based engine for failure binning - C.-H. Shen et al.

Clustering and classification of UVM test failures using machine learning techniques - A. Truong et al.

● Bug triage

BugMD: ML-powered mismatch detection via RTL and ISS - B. Mammo et al.

● Bug triage/RCA

BugMD: ML-powered mismatch detection via RTL and ISS - B. Mammo et al.

● RCA

Previous Works



Texas A&M University DVCon U.S. 2025 28

Overall Concept

Bug signatures from area 

n

Bug signatures from area 

1

Areas in a 
design

Area 1

Area 2
Unseen bug’s signatures

Interesting bugs are 

inserted

Bug signatures from area 
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Training bugs

Testing bugs

Confidence scores
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Overall Concept
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Overall Concept
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Preliminary Results

Baseline Classification Performance
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Preliminary Results

Baseline Graphs for MESI with LightGBM model
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Preliminary Results

Baseline Graphs for AES with LightGBM model
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Preliminary Results

Baseline Graphs for FabScalar with LightGBM model
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Evaluation: Performance - Compare to BugMD

Numbers from BugMD paper vs. actual VCDiag performance both using Random Forest



Automatic Bug Insertion using LLMs

Overview
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Motivation

Verification teams face significant overhead in manual bug insertion and testing
● Engineers manually analyze designs, identify potential vulnerabilities, and insert artificial bugs
● Requires deep expertise in design and verification
● Manual efforts scale very poorly across large designs or multiple testbenches

Manual efforts are time-intensive and error-prone
● Each bug is carefully crafted to test specific mechanisms, creating long development cycles
● Human bias leads to non-representative bug distributions: over-tested and under-tested classes
● Significant effort put into debugging and refining inserted bugs

How LLMs can help significantly
● Can generate meaningful and varied bugs automatically
● More bug scenarios lead to greater coverage across different failure modes
● Greater consistency, easier error recovery, & limited bias

38
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Key challenges & Solutions with LLM Processing

HDL and SystemVerilog files frequently exceed LLM context windows

● We propose a modular LLM verilog splitter that intelligently chunks large verilog files into a 
complete partition of workable regions

Variability in bug generation and overall stability

● Follow a class-based mutation paradigm with detailed instructions for each mutation class
● Verify generated bugs for syntactical & functional correctness & redo if necessary

Model comprehension degrades with large code sections

● Divide the task into a series of 3 sequential steps
○ Select the region based on a list of LLM-generated region descriptions
○ Select what bug to inject into the region and in which line(s) to insert it
○ Inject the bug given the identified line(s) and detailed instructions

39
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Overall LLM Workflow
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Design Verilog Files
Module 
Regions

LLM Module 
Splitter

LLM Region 
Mutator

Mutated 
Region

Mutated 
Verilog

Mutated 
Design

Test

No Bug Detected

Bug Detected

Mutate region again

Proceed with next region
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● Allow the LLM to define regions however it sees fit

○ Given a brief high-level hint as to what a region intuitively means

● Add line numbers preceding each line in the verilog content

● Ask LLM to produce a list of regions where each region is defined by:

○ Starting line number

○ Ending line number

○ Brief description of region

LLM Module Splitter

41
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size

If intuitively defined regions fit within 
context, there is no issue.
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size

How can we recognize the region is incomplete?

Solution: Provide auxiliary lines from next 
chunk

Instruct LLM to skip region if it spills over into 
the next chunk
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size

Now, we run into an issue where the region 
itself is too big for the context size.
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size

Now, we run into an issue where the region 
itself is too big for the context size. 

Solution: This will actually entirely be avoided 
as the LLM will simply construct regions within 
its context size (automatically splitting larger 
intuitive regions into smaller intuitive 
subregions).
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size
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LLM Module Splitter – Chunking
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Verilog Design file

End

Start
Max 

Context 
Size

File is appended with EOF token so LLM knows it 
is not expected to parse further.
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LLM Module Splitter – Chunking
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Verilog Design file

We have now split the verilog design into 9 
separate regions. For each, we can perform 
regional mutation.
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LLM Region Mutator
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Region 
Content

Instruction Set 
of Acceptable 

Mutations

Region 
Mutation 
History

Mutate 
Region

Mutated 
Region 

Content

Mutation 
Description

Update region content to continue 
mutating upon region

Append to mutation history in order to not 
repeat same mutation
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LLM Region Mutator - Step 1: Choose Region
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Choose 
Region

Mutation 
Index

Module 
Regions

Mutation 
History

Rationale

Selected 
Region

Bug Choice
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LLM Region Mutator - Step 2: Choose Mutation
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Choose 
Mutation

Mutation 
Index

Mutation 
History

Verilog Line to 
Mutate

Selected 
Mutation

Bug Insertion 
Plan

Selected 
Region
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LLM Region Mutator - Step 3: Inject Mutation
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Inject 
Mutation

Detailed 
Mutation 

Instructions

Selected 
Mutation

Bug Insertion 
Plan

Mutated 
Verilog Line

Mutation 
Summary

Verilog Line to 
Mutate

Mutation 
Index

Mutation 
History

Verilog File
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Demo
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Live Demo of Automatic Bug Insertion using LLMs

Download the demo video

↓



Coverage Acceleration

Overview
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Motivation

Random test generation, even with constraints, rarely achieves full coverage
● Generates many redundant test cases that hit already-covered points
● Struggles to reach complex corner cases
● Coverage typically plateaus well below 100%

Directed testing for last-mile coverage is resource-intensive
● Requires deep understanding of design internals
● Engineers must manually craft specialized test cases
● Often takes more than half of total verification time

Machine learning-guided test generation offers key advantages:
● Learns patterns from existing test coverage data
● Intelligently targets uncovered functionality points
● Achieves higher coverage in less time than traditional methods

56
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Methodology: Last-Mile Test Generation
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Relevant Variable Identification

● Uses Random Forest for feature selection

● Identify most relevant variables for each functionality group

● Reduce the search space for test generation

● Transform problem into ML feature selection task

Constraint Learning

● A GAN (Generative Adversarial Network) is trained on previously successful test cases

● The GAN learns to generate valid test inputs

● Implicitly capture complex constraints
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Methodology: Test Generation Process
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Initial Phase

● Random test generation for easy-to-cover points

● Collection of training data for ML models

● Identification of last-mile functionality points

LMT Phase

● Iterative process targeting uncovered points

● Prioritizes groups with most uncovered points

● Combines RF and GAN models for test generation

● Validates and executes generated tests
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Variables Pruning using Random Forest
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1. Extract log files from the regression

2. Extract AST

3. Extract Cone of influence

Build and relationship between covered cases and the variables.

What variables are contributing to the covered cases?

e.g. if a covergroup gets 80% of functional coverage, then record the variables 
participate in that coverage.

● Label variable with a probability (0 to 1).
● Variables labeled with a probability above the threshold of 0.7 are considered 

more for covered cases.
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Experimental Setup
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DUT: OpenTitan AES hardware IP

Testbench: UVM compliant testbench

Tools
● Verible
● VCDCAT

ML Framework
● Generative Adversarial Network (GAN)
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Workflow

61
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Workflow: Relevant Variable Identification
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1. Label the signals related to the variables in the AST

2. Label the variables related to the holes of coverage group 

3. Label the variables with low importance (COI)
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Workflow: GAN for Constraint Learning
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A GAN (Generative Adversarial Network) is trained on 
previously successful test cases

The GAN learns to generate valid test inputs



Assertion Generation using LLMs

Overview
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Motivation

● Writing assertions by hand is time-consuming and requires deep expertise

● Translating natural language hardware specifications to formal, precise verilog 
assertions is subjective and error-prone when performed manually

● More assertions lead to broader coverage, but engineers are limited by constraints

● The use of LLMs to generate assertions can save time, reduce errors, and improve 
coverage

65
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Methodology - Overview

Assertion Generation
● LLMs have shown great promise in generating high fidelity verilog assertions for manually 

generated and LLM-generated RTL
● We rely on a 2-step approach to produce assertions based on a hardware feature table with 

added context about SystemVerilog Assertions and formal verification techniques

Evaluating Assertion Fidelity
● No standardized method of evaluating an assertion quality
● Utility: Gauged through a separate LLM query
● Syntactical correctness: re-prompt LLM if generated assertion fails to compile
● Functional correctness: JasperGold FPV

○ Check if assertions pass for known bug-free designs
○ Check if assertions fail for known buggy designs

66
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Methodology - Step 1: Start with Hardware Feature Table
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Feature ID Feature Description

F1 I2C Protocol Compliance
Ensure compliance with the I2C protocol 
(START, STOP, ACK/NACK, data transfer).

F2 7-bit and 10-bit Addressing
Proper handling of 7-bit and 10-bit 
addressing modes.

F3 Multi-Master Arbitration
Handle arbitration loss in a multi-master 
environment.

F4 Clock Stretching
Ensure proper handling of clock stretching by 
slower slaves.
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Methodology - Step 2: Enrich Functional Descriptions
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Feature 
Table

Enrich 
Descriptions

Functional 
Descriptions

Step-by-Step 
Conditions
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Methodology - Step 3: Generate Assertion
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Feature 
Table

Enrich 
Descriptions

Functional 
Descriptions

Step-by-Step 
Conditions

SVA & DV 
Context

Assertion
Produce 

Assertion
Evaluate
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Methodology - Step 4: Evaluate & Revise
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Feature 
Table

Enrich 
Descriptions

Functional 
Descriptions

Step-by-Step 
Conditions

SVA & DV 
Context

Assertion
Produce 

Assertion
Evaluate

Syntax Check
JasperGold 

FPV 
Compiles

Compile Failure

Success

Failure
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Demo

71

Live Demo of Assertion Generation using LLMs

Download the demo video

↓



Test Bench Generation using LLMs

Overview
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Motivation

Manual efforts are time-consuming, costly, and error-prone

● Can take months for engineers to write detailed stimulus, checkers, & assertions manually
● Human-generated testbenches can contain subtle mistakes or overlook vulnerabilities, leading to 

false positives / negatives and incomplete coverage

Traditional testbenches miss edge cases, limiting coverage
● Verification engineers traditionally use directed tests and constrained-random techniques which 

frequently ignore rare state transitions or unlikely scenarios
● These edge cases are often the source of many functional bugs
● Limited coverage can cause huge problems post-silicon

Manually reviewing log files is time-consuming and scales poorly with hardware complexity

● As hardware designs become increasingly complex, verification data scales exponentially
● Engineers must scrutinize huge volumes of massive log files to identify patterns & root cause

73
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Motivation (continued)

LLM automation can significantly improve efficiency & coverage

● Automatically analyze hardware specifications, existing testbenches, and verification plans to 
produce structured testbenches that align with goals for coverage

● Generate a set of diverse stimulus, assertions, & checkers
● Adaptable: allows for rapid testbench updates as design evolves

LLMs are more robust at testbench generation for AI-generated RTL

● AI-generated RTL is becoming more common
● Often features unconventional structures and optimizations
● LLM-generated testbenches are better suited for these paradigms than traditional methods

74
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Methodology - Step 1: Prepare Inputs
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Provide Design Under Test (DUT) 

● High-level RTL description

Extract module headers

● Defining I/O ports of the DUT

Test Bench

DUTInputs Outputs

Module 
Header
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Methodology - Step 2: Produce Testbench Driver using LLM
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Coverage 
Goals

Testbench 
Specification

LLM Summarize 
Functionality

LLM Identify Test 
Scenarios

List of Test 
Scenarios

LLM Generate 
Testbench

Testbench

DUT

Module 
Headers
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Methodology - Step 3: Evaluate Testbench
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Check Syntax

● Ensure the testbench compiles 
successfully

Functional Correctness

● Run testbench on known bug-free RTL 
implementation to ensure it passes

● Run testbench on buggy RTL, derived 
from golden standard, & produce 
coverage report
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Demo
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Live Demo of Test Bench Generation using LLMs

Download the demo video

↓
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Promotional Statement on Texas A&M University WAVE-CHIP Program

WAVE-CHIP (Workforce Advancement in Verification and Evaluation of Chips) is a Texas 
A&M University's program to expand the verification workforce. The initiative addresses the 
shortage of verification engineers by:

1. Developing verification curriculum for community colleges and 4-year universities
2. Creating industry partnerships for hiring pipelines
3. Providing upskilling programs for working professionals

The program brings industry expertise into academia, leveraging Texas A&M's established 
verification curriculum.

Please contact wavechip@tamu.edu to partner in this critical mission. 
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