(2025

DESIGN AND VERIEICATION ™

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 24-27, 2025

Beyond Integers and Floating Point
Designing and Verifying with Alternate Number Representations

Russell Klein
Siemens EDA




Agenda

* Numbers and their representation
* Integer, floats, fixed points, and more

 Why change representations?
* Power, Performance, Area

* Impacts on algorithms
* Edge conditions — rounding, overflow, and saturation

* Impacts on verification

SYSTEMS INITIATIVE




A Bit of Number Theory

* Numbers are infinite
* Infinitely large
* For both the positive and negative values
* Infinitely small

 Modern (and even some ancient) math relies on this
* Algebra, Calculus, Trigonometry are all deeply rooted in this concept

SYSTEMS INITIATIVE




Representations

* Any representation we create will
be practically finite
* Only so much room on the paper

e Arabic was the most extensible

e But still limited for very large and
very small numbers

SYSTEMS INITIATIVE

Arabic |Egyptian [ Babylonian | Greek | Roman [Chinese [ Aztec Cretan |Mayan
1 | Y a I — . ‘ .
2 I Yy B I - - 4 .
3 Il VVY Y III E:_ e ot oo
4 [111 YYVYY d II1I PE eeoe et XX
5 [l YYVYYY € v ko eee o
6 [ VY%YY & VI -)—}( °e vertre —
7 [ VYVYVYY [« v ,b % tettree e
8 L YYYYY n VIII 32 e _eee

Yyy /A
9 | YYYvy 0 VIIII jL el freeeeeet oo
7YY _
10 n << L X —-| ek ® —_—
20 NN << K XX |~ B [
30 nnN | <T<t<< | A XXX [ = seesp | 000 o=
40 | nnnn |<C<C=C w [ XXX [yg-+| PR ®0®® | oo
50 [nnnNn <::E:EE v L £‘1' cecec[[|@00@® [0 —
60 mmr;mn Y 5 LX [X-}| FPR [*®ge® | ---
70 Y<c LXX 2222 (o000 [ -
mmﬁnﬂnn o ,b_|- i s
80 mr:\r:\r;n V<t<t | = [LXXX /\+ PPPP (#9800 [ -<°°
90 |nnNnn <_r 9 JLXXXX 2333 (@O0 O@® | coee
nNNN V< jL+ PPRER | ®®°°®
00 [ 9 [yZ=Z|e | C |[—F|PPPPP] 7 [
200 99 << | o cc | — PEEERE /77 S
e ¥ [Fepep

(2025

DESIGN AND VERIEICATION ™



Representations

* Sciences and engineering require representations for very big and very
small numbers

e Scientific notations
* Exponentiation

e Examples
Earth’s mass 5,972,400,000,000,000,000,000,000,000 grams 5.9724 x 1027
Electron’s mass 0.00000000000000000000000000091094 grams 9.1094 x 1928

SYSTEMS INITIATIVE




SI Units

Prefix Base ) Adoption deci d 10~' | 0.1
10 Decimal nb 1]
LD | £l centi c [102 |0.01 1795
quetta Q | 10%° | 1000000 000 000 000 000 000 000 000 000 — =
20223 milli m 10~ | 0.001
ronna R |10% 1,000 000 000 000 000 000 000 000 000 .
yotta Y [10% 1 000 000 000 000 000 000 000 000 miero H 10 LT I e
1991 _9
zetta | z | 10% 1,000 000 000 000 000 000 000 nano n 107 1 0.000 000 001 1960
exa E 1018 1 000 000 000 000 000 000 " pico p 10~"2| 0.000 000 000 001
1975
peta P [10° 1000 000 000 000 000 femto f 105 | 0.000 000 000 000 001
12 1964
fera | T |10 1000000000000 o060 atto a | 1078 | 0.000 000 000 000 000 001
giga G 10° 1000 000 000 =
zepto z 10~ 0.000 000 000 000 000 000 001
mega M 108 1000000 1873 ” 1991
Kilo " 10° 1000 yocto y 10 0.000 000 000 000 000 000 000 001
hecto | h | 102 ool 1785 ronto r | 10727 | 0.000 000 000 000 000 000 000 000 001 @
2022
deca da 10! 10 quecto q 10~2% | 0.000 000 000 000 000 000 000 000 000 001

SYSTEMS INITIATIVE

, https://en.wikipedia.org/wiki/Metric_prefix 3@2\50
) DVCON




Computing Machinery Representations

64-bit integer

2’s compliment
-1.8x10%° to 1.8x101°

Mg usis

32-bit integer

2’s compliment -4,294,967,296 to 4,294,967,295

Mg usis

* Integer— 32 bits and 64 bits

SYSTEMS INITIATIVE




Integers

* Consistent precision across the entire range
* Discrete steps between represented values

SYSTEMS INITIATIVE




Computing Machinery Representations

64-bit floating point

= exponent mantissa
E P -1.8x103%8 to 1.8x10308
o,

32-bit floating point
& exponent mantissa -3.4x1038 to0 3.4x1038
>
o,

* Floating point — IEEE standard 32 bits and 64 bits

SYSTEMS INITIATIVE




Floating point

* Not consistent precision, and also discrete steps between values
* High precision near O
* Lower precision for bigger numbers
* For IEEE float 32, numbers above 2%% (16,777,216) are separated by 2.0

16,777,216 - 2mantissa bits ynjque values

SYSTEMS INITIATIVE




Problems

e Fun with Excel (running on a 64-bit CPU, in 2025)

1.23E-100 1.23E-100 3.45E+100 1.23E-05

1.23E-100 1.23E-100 7.89E+120 1.23E-05

sum: 2.46E-100 3.45E+100 -3.45E+100 3.45E+05
7.89E+120 -7.89E+120 7.89E+09

-3.45E+100 1.23E-100 -3.45E+05

-7.89E+120 1.23E-100 -7.89E+09

sum: 0 sum: 2.46E-100 sum: | 2.48E-05_|

(2025

DESIGN AND VERIFICATION ™
SAN J SA
FEBRUARY 24-27, 2025

SYSTEMS INITIATIVE




>>>
>>>
>>>
>>>
>>>

123.

>>>
>>>
>>>
0.0

Problems

* Fun with Python (really numpy)

>>>
import numpy >>> import numpy
a = numpy.float32(123) >>> a = numpy.float32(12345)
b = numpy.float32(123%10%%*9) >>> b = numpy.float32(123%10%%9)
a >>> a
0 12345.0
a=a+b >> a=a+ b
a=a->»b >>> a=a->b
a >>> a
16384.0
>>> [

SYSTEMS INITIATIVE

>>>

>>> import numpy

>>> b = numpy.float32(123%10%%*9)
>>> b - numpy.float32(4096.0)
123000000000.0

>>> b - numpy.float32(4097.0)
122999990000.0

>>>

NSNS

(2025

DESIGN AND VERIEICATION ™

CONFERENCE AND EXHIBITION



Algorithms Implemented in Hardware

_ —b+Vbh?—4ac
N 2a

e Fast Fourier transformations x
e Audio filters

1 1
. . cosa+cosf =2cos=(a+ B)cos=(a—p)
e Gaussian blurring 2 2

n

* Convolutions _2 Wk, n-k
. x+a)* = (k)x am™
* Inferencing =0
* Trigonometry 0 - -
f(x) =ay+ Z (an cos— + b, sin—)
* And many more o] L L

SYSTEMS INITIATIVE



Algorithms Implemented in Hardware

e Based on math
* Generally, there will be some software reference implementation
* Presumably, well verified for some set of inputs

* Usually, computationally complex
* Simple, lightweight computations can be left in software

SYSTEMS INITIATIVE




The “Range” Problem

* An average function data[o] - 10
data[1] = 20
. . . data[2] = 30
int average(int data[], int count) data[3] = 40
: -0 data[4] = 50
Lt sun = 0; dataf5] = 60
’ data[6] = 70
if (count == @) return sum; data[7] = 80
data[8] = 90

for (i=0; i<count; i++) { data[9] = 100

printf("data[%d] = %d \n", i, data[i]); average 1s = 55

sum += data[1i];
}

return sum/count;

(2025

accellera T

SYSTEMS INITIATIVE




The “Range” Problem

* An average function

int average(int data[], int count)

SYSTEMS INITIATIVE

int sum = 0;
int 1;

if (count == @) return sum;

for (1i=0; i<count; 1++) {
printf("data[%d] = %d \n", i, data[i]);
sum += data[1i];

ks

return sum/count;

data[0]
data[1]
datal[2]
data[3]
data[4]
data[5]
data[6]
datal7]
data[8]
data[9]

217897144
417876878
422077472
418769530
439176704
505877146
596749270
406971490
439084336
430487396

average is = 7

(2025

DESIGN AND VERIEICATION ™



Math in Hardware

* In a design, the representation can be anything we want
* Obviously, integer registers are sized to be just big enough

* Why deviate from the reference implementation?
* Power
* Performance
* Area

SYSTEMS INITIATIVE




Data Sizes and Operators

Adder: fl A
. er: floating
Cost of Operations ooint is 37X
Relative Energy Cost Relative Area Cost bigger than
Operation: Energy (pJ) Area (um2) i
8b Add 0.03 36 L integer
16b Add 0.05 67
32b Add o1 |l 137
16b FP Add o+ | 1360
32b FP Add 0.9 — 4184
8b Mult o2 [N 282
32b Mult 3.1 — 3495
16b FP Mult 11— 1640
32b FP Mult 37 7700
32b SRAM Read (8KB) 5 — N/A
32b DRAM Read 40 [ N/A
1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

L DVCON
unimeo sTares

SYSTEMS INITIATIVE




Data Sizes and Operators

Cost of Operations
Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um2) \
8b Add 0.03 36 Mult: floating
16b Add 0.05 67 point is 2.2X
32b Add 0.1 - 137 bigger than
16b FP Add o+ | 1360 integer
32b FP Add 0.9 — 4184 /\
8b Mult o2 [N 282
32b Mult 3.1 — 3495
16b FP Mult 11— 1640
32b FP Mult 37 7700
32b SRAM Read (8KB) 5 — N/A
32b DRAM Read 40 [ N/A

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

Ll DVCON
unimeo sTares

SYSTEMS INITIATIVE




Data Sizes and Operators

SYSTEMS INITIATIVE

Cost of Operations

Relative Energy Cost

Relative Area Cost

Operation: Energy (pJ) Area (um2)
8b Add 0.03 36 N\
16b Add 0.05 67
32b Add o1 |l 137
16b FP Add o+ | 1360
32b FP Add 0.9 — 4184
8b Mult o2 [N 282
32b Mult 3.1 — 3495
16b FP Mult 11— 1640
32b FP Mult 37 7700
32b SRAM Read (8KB) 5 — N/A
32b DRAM Read 40 [ N/A
1 10 100 1000 10000 1 10 100 1000

\
Adder: 32-bit is
3.8 X bigger
than 8-bit

)

Source: Nvidia DAC2017

(2025

DESIGN AND VERIEICATION ™

CONFERENCE AND EXHIBITION



Data Sizes and Operators

Cost of Operations
Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um2)
8b Add 0.03 36
16b Add 0.05 67
32b Add o1 |l 137
16b FP Add o+ | 1360
32b FP Add 0.9 — 4184
8b Mult o2 [N 282
32b Mult 3.1 — 3495
16b FP Mult 11— 1640 ™\
32b FP Mult 37 7700 -
32b SRAM Read (8KB) 5 —— N/A Mult: 32-bit is
32b DRAM Read es0 | N/A 12 X bigger

I 10 100 1000 10000 I 10 100 1000 than 8-bit

Source: Nvidia DAC2017 J

SYSTEMS INITIATIVE

L DVCON
unimeo sTares



Energy and Operators

/
. Adder: floating
Cost of Operatio ooint uses 9X
Relative Energy Cost energy vs. Area Cost

Operation: Energy (pJ) integer
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.4
16b FP Mult 1:]
32b FP Mult 3.7
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

L DVCON
unimeo sTares

SYSTEMS INITIATIVE




Energy and Operators

Cost of Operations

Relative Energy Cost DL o Area Cost

Operation: Energy (pJ)
8b Add 0.03 Mult: floating
16b Add 0.05 point uses 1.2X
32b Add 0.1 energy vs.
16b FP Add 04 integer
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.4
16b FP Mult 1:1
32b FP Mult 3.7
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017
(2025

l/ DESIGN AND VERIEICATION ™
CONFERENCE AND EXHIBITION
A
Fi

SYSTEMS INITIATIVE




Energy and Operators A

Adder: 32-bit
uses 3 X energy
Cost of Oper vs. 8-bit
Relau /J Area Cost

Operation: Energy (pJ) I Area (um2)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add o+ | 1360
32b FP Add 0.9 — 4184
8b Mult o2 [N 282
32b Mult 3.1 — 3495
16b FP Mult 11— 1640
32b FP Mult 37 7700
32b SRAM Read (8KB) 5 — N/A
32b DRAM Read 40 [ N/A

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

L DVCON
unimeo sTares

SYSTEMS INITIATIVE




Energy and Operators

Cost of Operations

Relative Energy Cost

Operation: Energy (pJ) Mult: 32-bit
8b Add 0.03

16b Add 0.05 uses 15.5 X
32b Add 01 energy vs. 8-bit
16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 14

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

Ll DVCON
unimeo sTares

SYSTEMS INITIATIVE




Smaller is Better

Multiplier Area vs Operand Size
14000

12000 A—
c
10000 B—

8000

A one-bit integer

6000 multiplier is an “and” gate

4000

2000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

—Integer —Floating Point

accellera s

SYSTEMS INITIATIVE




Smaller is better

Bit Width vs Relative Delay

= * Propagation delay is shorter
30 when there are fewer gates
- N * 32-bit adder has a carry
2 chain through 32 operators

15
10
5

0
123456 7 8 91011121314151617 1819 202122 232425262728293031

Bit-width —Multiplier =——Adder

SYSTEMS INITIATIVE




Energy and Operators

Cost of Operations

Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um2)
8b Add 0.03 36
16b Add 0.05
32b Add 0.1 32-bit data read
16b FP Add 0.4 uses 170X more
32b FP Add 0.9 energy than a
8b Mult 0.2 multiplication
32b Mult 3.1
16b FP Mult 1:1
32b FP Mult 3T
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

Ll DVCON
unimeo sTares

SYSTEMS INITIATIVE




Energy Cost of Data Movement

Normalized Energy Cost’

ALU 1x (Reference)

05-1.0k8 [lg—0] i 1x

NoC: 200 - 1000 PEs | PE ALU
100 - 500 kB R:11ii{=ls ALU

One of the largest
_ 200x _ energy consumers

in your design

Source: Nvidia DAC2017

SYSTEMS INITIATIVE



Energy Cost of Data Movement

* Reducing the size of the data means:

e Less data to store
e Less data to move

* Algorithms that need to be in hardware often have large data sets
e This is most pronounced in Al algorithms

* Reduce memory footprint by 2-3X
* Reduce movement costs by 2-3X

SYSTEMS INITIATIVE




Alternate Representations

* Smaller integers
* Fixed point

* Varying sized floating point
* bfloat_16

* Posits
* Indexes

SYSTEMS INITIATIVE



Varying Sized Integers

e Obvious (included for completeness)

* You don’t use a 32-bit integer when you have data values from 1 to 10

 Synthesis tools sometimes trim integers for you
e If it can work out that bits are not needed

9 bits

Range: -256 to 255
Precision: 1

SYSTEMS INITIATIVE




Fixed Point

* Integer with an implied “binary point”

A

8 bits > < 6 bits ——

27 26 25 24 23 22 21 20 421 22 23 24 25 26

Range: -128.98 to 127.98
binary point Precision: 2%, 0.0156

SYSTEMS INITIATIVE




Fixed Point

* Uses almost the same operators as integers
* Multiplication and division operations need to mind the binary point

0.1x0.1=0.01 1x1=1 10x10=100

* Consistent precision across the entire range of value represented

SYSTEMS INITIATIVE




Varying Sized Floating-Point

* Arbitrary sized exponent and mantissa

+«—— 4 bits > < 9 bits

Range: -64K to 64K
Precision: Varies, best 0.0078

SYSTEMS INITIATIVE



Varying Sized Floating-Point

* Better precision near O and larger range than equivalent integer or
fixed point

* For many computations standard sized floats are overkill
* Excess bits in data storage, data movement, and operators

SYSTEMS INITIATIVE



Bfloat-16 (or Google’s Brain Float)

* Inferencing algorithms usually have numbers near O

* As numbers get big precision is less important
 Just knowing that the quantity is “big” is often sufficient
Al researchers at Google came up with 16-bit floating point optimized

for Al training and inferencing
* Smaller data, less data movement, and smaller silicon have a big impact on
training costs

* Google’s TPUs support this format
* RISC-V extensions can support this in vector unit

SYSTEMS INITIATIVE




Bfloat-16

* Brain float

8 bits > < 7 bits ———

Range: -1038 to 1038
Precision: Varies

SYSTEMS INITIATIVE




Bfloat-16 to IEEE Float-32

* Key value is fast conversion to and from native float-32

IEEE 32-bit floating point

Bfloat-16




Other Notable Floating-Point Formats

Nvidia's TensorFloat-32 (19 bits)
sign exponent (8 bit) fraction (10 bit)

o,o(t/1|{1(1;1(o0o|jo0ojo0(1(0(0|0|0(0(0|0|O0

18 17 10 9 0
AMD's fp24 format
sign exponent (7 bit) fraction (16 bit)

I 1 I 1
cjoft1(1y1;1,0(0j0(1}j0j0/{0(0|0|O0O|O0O|O0|0|0|O0O|O0O(O0]|O0
23 22 16 15 0

Pixar's PXR24 format
sign exponent (8 bit) fraction (15 bit)

I T 1 I 1
o,o(t1|{1|{1|1(f0(f0(0{1j0,0/,0/(0/O0(O0O(O0O(O0|O0O|JO0JO0O|JO0|O0|O0
23 22 15 14 0

source: Wikipedia

Koty BVET

SYSTEMS INITIATIVE




Posits

* Gustafson and Yonemoto developed these in 2017 for Al

* Adds “regime” bits

* Essentially, an exponent for the exponent
* Gives better precision near zero
* And larger range than equivalently sized floating point

 Claim significantly better accuracy for training and inferencing with
smaller representation

SYSTEMS INITIATIVE




POS ItS 1 bit n bits m bits

Sign Exponent Fraction Traditional Float

1 bit k+1 bits 2 bits m bits
Sign Regime Exponent Fraction Posits

—— Posit(32,2)
25 - —— |EEE float 32

20 1

15

10 A

Binary accuracy bits

—-150 —-100 =50 0 50 100 150
Exponent

Source: https://spectrum.ieee.org/floating-point-numbers-posits-processor

(2025

l/ DESIGN AND VERIEICATION ™
CONFERENCE AND EXHIBITION
SAN Ji , USA
2025

SYSTEMS INITIATIVE




Indexes (or Look-up Table)

* For “lumpy” non-contiguous irregular data

 Can potentially save space (and movement) by loading values into a
memory and storing/moving an index

SYSTEMS INITIATIVE



Alternate Representations

* Smaller integers * This was sample of a few ways to

* Fixed point represent numbers for

. , _ _ computation
* Varying sized floating point

« bfloat 16 . Limitgql only by designer
_ creativity
* Posits
* Indexes

SYSTEMS INITIATIVE



Computing with Alternate Formats

* Any change to the representation will change the math
* And can affect the results of computations
* There will be less precision and a smaller range

* Key issues
* Overflows
* Rounding

SYSTEMS INITIATIVE




Overflow

* Overflow happens when the result of the computation is larger than
can be represented by the register/variable

* For integers, high order bits are dropped
* Result is incorrect, all subsequent calculations are corrupted

* For floats, value becomes INF (infinity)
e Subsequent operations result in either INF or NaN

SYSTEMS INITIATIVE



Overflow

* With smaller representations, overflow is a bigger concern

* With 32-bit and 64-bit CPUs overflow is uncommon
* Older 8/16 bit CPUs have overflow flags and “add with carry” instructions

* Overflow handling at the HW level is rarely propagated to SW

* Fun Fact
e RISC-V architecture has no ADD with CARRY instruction

* And no carry/overflow/borrow bit in ISA

SYSTEMS INITIATIVE




. /,:‘} ) \'\.. Overflow /‘1 [\
Saturation
= ,.‘f /'K s'\l
 Saturating math sets the output 3 \ \
value to the maximum representable
value LN a
* Does not just drop bits r— .
. wl [ Saturation
* In some cases, this produces S
acceptable results c )
& ,
3

SYSTEMS INITIATIVE




Saturating Math

 Saturating math assigns largest possible value instead of dropping bits
* With 10-bit signed fixed-point number with 7 integer bits:

Overflow: Saturation:
62.5 ©111111.100 62.5 ©111111.100
+ 2.0 10. 000 + 2.0 10. 000
- 1.5 1111101.100 63.875 #111111.111
L]
REALLY WRONG: Close to correct

SYSTEMS INITIATIVE




Rounding

* Integer adders truncate results:
* In C code: printf(“ %d \n”, 1000 * (99/100));
* Results in “0”
* Assigning integers from any other type truncates low order bits
e Consistent in most programming languages and with bit-vector types in Verilog
* As representation’s range shrinks, truncation error becomes more
significant

SYSTEMS INITIATIVE




Rounding Models

(Round nearest | Y A g_ ! : .

omreee downward | T T * Many different rounding models

o=emeO UPWard - \ . .

Gnmnnct = 2610 =  Rounding will affect results

e =m0 — iNfinity : o .

o—s — over * All verification models must be
— 0

bit-level consistent

O ROUN
— infinity

—

Image source: https://en.wikipedia.org/wiki/Rounding

SYSTEMS INITIATIVE




Examples

* Inferencing accelerator
* MNIST handwritten character recognition
e Conversion from float32 (Python) to 10 bit fixed point (Verilog)

* Audio processing

* MFCC calculation (MEL Frequency Coefficient Calculation)
* Fast Fourier transformation of PCM audio to

* Conversion from double (C++) to bespoke 8-bit float (Verilog)

SYSTEMS INITIATIVE



MNIST Handwritten Character Recognition

* “Hello, World!” example for machine learning
* Small, but runs millions of multiply accumulate operations
* Performs many 2d convolutions and vector/matrix multiplications
* Good platform for exploring implementation and optimization methods

SYSTEMS INITIATIVE




Fixed Point Size Analysis

. Accuracy vs Integer Bits * High-water mark of data and
30 intermediate values showed

& range of values was -37 to 56
:Z * Float32 (+/-103% is excessive)

* * Sensitivity analysis performed
. across varying fixed-point

20 representations

10

0
16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

—Fixed Point Saturating Fixed Point

SYSTEMS INITIATIVE




Fixed Point Conversion Results

Integer Bits
8 7 6 5 4 3 2 1 0
8 98.05 98.05 98.05 97.55 76.75 28.70 18.00 16.80 14.90
7 97.85 97.85 97.85 97.25 75.39 27.90 17.50 16.60 15.40
.;% 6 97.13 97.95 97.91 97,4 75.15 28.30 17.30 15.90 13.90
— 5 97.21 98.08 92,10 @ 72.57 24.50 16.90 15.20 14.90
o
5 4 96.94 97.79 @ 35- 59.90 21.40 16.20 13.10 15.10
'S 3 95.56 96.37 55. 90.08 38.83 16.70 14.00 11.50 12.70
§ 2 82.31 83.13 83.13 64.73 22.70 14.90 12.30 10.50 8.50
L 1 30.15 30.97 30.92 33.72 32.07 24.60 34.90 12.30 8.50
0 9.53 9.33 9.50 9.37 9.37 8.50 8.50 8.50 10.00
Accuracy

‘1,

L o d
Computational resources:  []] Area=-78% =42 Speed = 2.4X faster @ Energy = -92%

(2025

accellera .y

SYSTEMS INITIATIVE




MFCC — MEL Frequency Cepstrum Coefficients

e Coverts audio waveform into an audio 2D spectrogram
* “MEL” frequencies correspond to human ear sensitivities
 Computes audio energy in a range of frequencies and their changes over time
* An FFT is computed for each frequency and timeslice

* Spectrograms are used in voice to text, wakewords, and voiceprinting

Mic Audio \X}éveform

SYSTEMS INITIATIVE



Float32 to 8-bit Float

. Miean Error » Fixed Point did not work at all

10000 * Computed average error in

35000

10000 spectrogram values

25000 e Accuracy started dropping at 10 bits
20000

15000  8-bit accuracy was good enough
10000 for downstream processing

5000

0
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Bit-Width
—

Computational resources: [1] Area=-89% m Prop delay = -62% w Power = -84%

SYSTEMS INITIATIVE




Verification of Modified Algorithm

* Need to fully verify operators, computational operations

* Also need to verify that algorithm produces correct results
e with modified representation

* Algorithms are likely too large to analytically size representation
* MNIST had > 4 million MAC operations
* MFCC performed 2,000 FFT calculations on input waveform

* Need to run large data sets
* Both real and synthetic data
 Verification will only be as good as the stimuli

SYSTEMS INITIATIVE




Key Verification Points

* High and low watermarks for inputs, output, and intermediate data

* Need to understand largest and smallest values represented at each point in
the algorithm

* When overflows occur
* Need to know anytime operation results in overflow of the representation

* These observations will change with each alteration to the
representation

* Will require multiple runs at different representations
* Must have bit level accuracy matching ultimate RTL implementation

SYSTEMS INITIATIVE




Run in Tandem with Original Algorithm

* Run modified algorithm in parallel with the original algorithm

* Perform on-the-fly comparisons

* Ensure needed accuracy is maintained
* Monitor both outputs and intermediate values

Original

Algorithm .
Continuous

Stimulus :
comparison

Modified (typed)
Algorithm

SYSTEMS INITIATIVE




Performance Needed

* Algorithms are likely large and complex
e Else would be left in software

* Logic simulation is probably too slow
* Yolo-2 — small object recognition algorithm — at RTL takes ~5 hours 1 inference

e About 6 CPU years for logic simulation of 10,000 inferences

e Raise the abstraction level

e Can run 1,000X faster
* But need to ensure bit level activity of math is identical to intended
implementation

SYSTEMS INITIATIVE




AC Data Types

* Bit accurate C++ library of numeric representations and operators
* Templated typedefs for various representations
* Extensions for bit level manipulation, for hardware operations

 Supports bit level accurate representation of various data formats
* Overloaded operators for all types perform bit level accurate operations
e Easy migration from C++ or other high-level languages

 Supports multiple rounding models and saturating math

http://hlslibs.org

SYSTEMS INITIATIVE




AC Data Types

* Variable sized int - ac_int<size, signedness>;
* Fixed point numbers - ac_fixed<size, integer_bits, signedness>
* Variable sized float - ac_float<size, exponent_size>;

* Bfloat-16 - ac_bfloat<>;
* |EEE float 32 and 64 - ac_ieee_float32<>, ac_ieee_float64<>;
* complex numbers - ac_complex<type>;

SYSTEMS INITIATIVE




Value Range Analysis

* Records high and low watermarks for variables throughout algorithm
* |dentifies overflow and underflow points

 Essentially, assertions and monitors in the ac_type classes

* This information enables zeroing in on the correct representation
quickly

SYSTEMS INITIATIVE




yvnthesis from C++ for AC types

.
Automated path from C/C++ or SystemC into
362 {

364 / *should* make it easy for catapult to pipeli access to internal memories M M M
technology optimized synthesizable RTL
366 index_type count;

367 index_type n;

368

369 static const index_type stride = STRIDE;

371 count = 9;

2 while (count < size) { v d

373 n = stride; trans,

374 if ((size - count) < stride) n = size - count; // mis-aligned at the end of transfer o

375 read_line(dst, dst_offset, src, src_offset, n); e,

376 count += n; i G

377 src_offset read_dats,

378 dst_offset += n; o

379 ¥

380 ¥ :i‘ reg [31:0] timer_value;

Catapult

High-Leve 2 ==
B a1 rd_reg <= timer_value;
nthesis .

46 _endnodute

Synthesizable RTL

2025

DESIGN AND VERIEICATION ™

accellera

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE SAN JOSE, CA, USA

FEBRUARY 24-27, 2025




Catapult Hight-Level Synthesis

Addition operator

* Optimized for ASIC or FPGA
e Output is VHLD or Verilog T — —=

reg(32,1,0,0,1)

module add_core (
clk, rst, a_rsc_dat, b_rsc_dat, dout_rsc_dat
):

input clk;
input rst;
input [31:0] a_rsc_dat; == Clock and reset
input [31:0] b_rsc_dat;

output [31:0] dout_rsc_dat;

WOl add(int a, int b, int &dout){
dout = a + b;

// Interconnect Declarations
wire [31:0] a_rsci_idat;

wire [31:0] b_rsci_idat;

reg [31:0] dout_rsci_idat;
wire [32:0] nl_dout_rsci_idat;

”éluays @(posedge clk) begin Addltlon Operator

if ( rst ) begin
dout_rsci_idat <= 32'b0;
end
else begin
dout_rsci_idat <= nl_dout_rsci idat[31;0],
end
end
assign nl_dout rsci idat = a_rsci_idat + b_rsci_idat;
41 |endmodule

accellera DVCON
unireo sTares

SYSTEMS INITIATIVE

Jos|
FEBRUARY 24-




Architectural Exploration

User controls implementation
with constraints and pragmas

data_t MAC (
data_t data_in[4],
coef t coef in[4]

) |

:
-

accu_t acec = 0 ;

Architecture
Constraints

for (int i=0;i<4;i++) {
acc += data_in[i] * coef in[i] ;
}

return acc ;

U
Y

Hfli

SYSTEMS INITIATIVE




Verification of RTL against C++

e Compare C++ against RTL with
* Formal equivalency (SLEC)
* Coverage
* Dynamic simulation

=¥ Bit accurate C++ Score
boarding
: and
Synthesized comparison
Verilog

SYSTEMS INITIATIVE



Technology Trends

I 1

ol WA * CPU single thread performance
d Transistors
10° gt |y has stalled
a A2 .

5L aats o] Single-Thread .

o 0 s ¥ |peiomae . o Performance demands continue
- &g A of — .
123 i ol ?’.ﬁ;ﬁlw“’ il:‘“.l Frequency (MHz) tO rise
ey S ;{':'.vv,.w,;.;;wvx'«f Wik "+ More algorithms moving to
A n¥ vy L v’ .0' vv

) o g B .:g'o:'* X ot et hardware
100 —i : Toe B oees oo menennos -

1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

(2025

accellera T

SYSTEMS INITIATIVE




Conclusion

* Using alternative numeric representations when implementing
designs can greatly improve PPA

* Need to carefully migrate from original algorithm to new
representations, then to RTL
e Continuous verification against the prior implementation is essential
* Compare not just results but intermediate values as well

* Must ensure new representation maintains fidelity of the algorithm

SYSTEMS INITIATIVE




22|/

Questions or comments

Russell.Klein@siemens.com
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/

htt SR IElbs lore accellera



mailto:Russell.Klein@siemens.com
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/

