
Beyond Integers and Floating Point
Designing and Verifying with Alternate Number Representations

Russell Klein
Siemens EDA

Agenda

• Numbers and their representation
• Integer, floats, fixed points, and more

• Why change representations?
• Power, Performance, Area

• Impacts on algorithms
• Edge conditions – rounding, overflow, and saturation

• Impacts on verification

A Bit of Number Theory

• Numbers are infinite
• Infinitely large

• For both the positive and negative values
• Infinitely small

• Modern (and even some ancient) math relies on this
• Algebra, Calculus, Trigonometry are all deeply rooted in this concept

0
+-

Representations

• Any representation we create will
be practically finite
• Only so much room on the paper

• Arabic was the most extensible
• But still limited for very large and

very small numbers

J. Zhang, D. Norman, “Cognition,” Vol 57, Issue 3, December 1995, Pages 271-295

Representations

• Sciences and engineering require representations for very big and very
small numbers
• Scientific notations

• Exponentiation

• Examples
Earth’s mass 5,972,400,000,000,000,000,000,000,000 grams 5.9724 x 1027
Electron’s mass 0.00000000000000000000000000091094 grams 9.1094 x 19-28

SI Units

https://en.wikipedia.org/wiki/Metric_prefix

Computing Machinery Representations

• Integer– 32 bits and 64 bits

sign bit

64-bit integer

sign bit

2’s compliment

32-bit integer

2’s compliment

-4,294,967,296 to 4,294,967,295

-1.8x1019 to 1.8x1019

Integers

• Consistent precision across the entire range
• Discrete steps between represented values

Computing Machinery Representations

• Floating point – IEEE standard 32 bits and 64 bits

exponent

sign bit

64-bit floating point

sign bit

exponent mantissa

mantissa

32-bit floating point

-3.4x1038 to 3.4x1038

-1.8x10308 to 1.8x10308

Floating point

• Not consistent precision, and also discrete steps between values
• High precision near 0
• Lower precision for bigger numbers
• For IEEE float 32, numbers above 224 (16,777,216) are separated by 2.0

0

16,777,216 - 2mantissa bits unique values

Problems

• Fun with Excel (running on a 64-bit CPU, in 2025)

Problems

• Fun with Python (really numpy)

Algorithms Implemented in Hardware

• Fast Fourier transformations
• Audio filters
• Gaussian blurring
• Convolutions
• Inferencing
• Trigonometry
• And many more

𝑓 𝑥 = 𝑎! +&
"#$

%

𝑎" cos
𝑛𝜋𝑥
𝐿 + 𝑏" sin

𝑛𝜋𝑥
𝐿

𝑥 + 𝑎 " =&
&#!

"
𝑛
𝑘 𝑥&𝑎"'&

cos𝛼 + cos𝛽 = 2cos
1
2 𝛼 + 𝛽 cos

1
2 𝛼 − 𝛽

𝑥 =
−𝑏 ± 𝑏(− 4𝑎𝑐

2𝑎

Algorithms Implemented in Hardware

• Based on math
• Generally, there will be some software reference implementation

• Presumably, well verified for some set of inputs

• Usually, computationally complex
• Simple, lightweight computations can be left in software

The “Range” Problem

• An average function
int average(int data[], int count)
{
 int sum = 0;
 int i;

 if (count == 0) return sum;

 for (i=0; i<count; i++) {
 printf("data[%d] = %d \n", i, data[i]);
 sum += data[i];
 }
 return sum/count;
}

data[0] = 10
data[1] = 20
data[2] = 30
data[3] = 40
data[4] = 50
data[5] = 60
data[6] = 70
data[7] = 80
data[8] = 90
data[9] = 100
average is = 55

The “Range” Problem

• An average function
int average(int data[], int count)
{
 int sum = 0;
 int i;

 if (count == 0) return sum;

 for (i=0; i<count; i++) {
 printf("data[%d] = %d \n", i, data[i]);
 sum += data[i];
 }
 return sum/count;
}

data[0] = 10
data[1] = 20
data[2] = 30
data[3] = 40
data[4] = 50
data[5] = 60
data[6] = 70
data[7] = 80
data[8] = 90
data[9] = 100
average is = 55

data[0] = 217897144
data[1] = 417876878
data[2] = 422077472
data[3] = 418769530
data[4] = 439176704
data[5] = 505877146
data[6] = 596749270
data[7] = 406971490
data[8] = 439084336
data[9] = 430487396
average is = 7

Math in Hardware

• In a design, the representation can be anything we want
• Obviously, integer registers are sized to be just big enough

• Why deviate from the reference implementation?
• Power
• Performance
• Area

Data Sizes and Operators

Source: Nvidia DAC2017

Adder: floating
point is 37X
bigger than

integer

Data Sizes and Operators

Source: Nvidia DAC2017

Mult: floating
point is 2.2X
bigger than

integer

Data Sizes and Operators

Source: Nvidia DAC2017

Adder: 32-bit is
3.8 X bigger
than 8-bit

Data Sizes and Operators

Source: Nvidia DAC2017

Mult: 32-bit is
12 X bigger
than 8-bit

Energy and Operators

Source: Nvidia DAC2017

Adder: floating
point uses 9X

energy vs.
integer

Energy and Operators

Source: Nvidia DAC2017

Mult: floating
point uses 1.2X

energy vs.
integer

Energy and Operators

Source: Nvidia DAC2017

Adder: 32-bit
uses 3 X energy

vs. 8-bit

Energy and Operators

Source: Nvidia DAC2017

Mult: 32-bit
uses 15.5 X

energy vs. 8-bit

Smaller is Better

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Multiplier Area vs Operand Size

Integer Floating Point

A one-bit integer
multiplier is an “and” gate

Smaller is better

• Propagation delay is shorter
when there are fewer gates
• 32-bit adder has a carry

chain through 32 operators

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit Width vs Relative Delay

Multiplier Adder

De
la

y

Bit-width

Energy and Operators

Source: Nvidia DAC2017

32-bit data read
uses 170X more
energy than a
multiplication

Energy Cost of Data Movement

Source: Nvidia DAC2017

One of the largest
energy consumers
in your design

Energy Cost of Data Movement

• Reducing the size of the data means:
• Less data to store
• Less data to move

• Algorithms that need to be in hardware often have large data sets
• This is most pronounced in AI algorithms

• Reduce memory footprint by 2-3X
• Reduce movement costs by 2-3X

Alternate Representations

• Smaller integers
• Fixed point
• Varying sized floating point

• bfloat_16

• Posits
• Indexes

Varying Sized Integers

• Obvious (included for completeness)
• You don’t use a 32-bit integer when you have data values from 1 to 10
• Synthesis tools sometimes trim integers for you

• If it can work out that bits are not needed

Range: -256 to 255
Precision: 1

9 bits

Fixed Point

• Integer with an implied “binary point”

20 2-1 2-2 2-3 2-4 2-5 2-626 25 24 23 22 2127

binary point

6 bits8 bits

Range: -128.98 to 127.98
Precision: 2-6, 0.0156

Fixed Point

• Uses almost the same operators as integers
• Multiplication and division operations need to mind the binary point

• Consistent precision across the entire range of value represented

0.1 x 0.1 = 0.01 1 x 1 = 1 10 x 10 = 100

Varying Sized Floating-Point

• Arbitrary sized exponent and mantissa

9 bits4 bits

Range: -64K to 64K
Precision: Varies, best 0.0078

Varying Sized Floating-Point

• Better precision near 0 and larger range than equivalent integer or
fixed point
• For many computations standard sized floats are overkill

• Excess bits in data storage, data movement, and operators

Bfloat-16 (or Google’s Brain Float)

• Inferencing algorithms usually have numbers near 0
• As numbers get big precision is less important

• Just knowing that the quantity is “big” is often sufficient

• AI researchers at Google came up with 16-bit floating point optimized
for AI training and inferencing
• Smaller data, less data movement, and smaller silicon have a big impact on

training costs

• Google’s TPUs support this format
• RISC-V extensions can support this in vector unit

Bfloat-16

• Brain float

8 bits 7 bits

Range: -1038 to 1038

Precision: Varies

Bfloat-16 to IEEE Float-32

• Key value is fast conversion to and from native float-32

IEEE 32-bit floating point

Bfloat-16

Other Notable Floating-Point Formats

source: Wikipedia

Posits

• Gustafson and Yonemoto developed these in 2017 for AI
• Adds “regime” bits

• Essentially, an exponent for the exponent

• Gives better precision near zero
• And larger range than equivalently sized floating point

• Claim significantly better accuracy for training and inferencing with
smaller representation

Posits

Source: https://spectrum.ieee.org/floating-point-numbers-posits-processor

Traditional Float

Posits

Indexes (or Look-up Table)

• For ”lumpy” non-contiguous irregular data
• Can potentially save space (and movement) by loading values into a

memory and storing/moving an index

0

Alternate Representations

• Smaller integers
• Fixed point
• Varying sized floating point

• bfloat_16

• Posits
• Indexes

• This was sample of a few ways to
represent numbers for
computation
• Limited only by designer

creativity

Computing with Alternate Formats

• Any change to the representation will change the math
• And can affect the results of computations
• There will be less precision and a smaller range

• Key issues
• Overflows
• Rounding

Overflow

• Overflow happens when the result of the computation is larger than
can be represented by the register/variable
• For integers, high order bits are dropped

• Result is incorrect, all subsequent calculations are corrupted

• For floats, value becomes INF (infinity)
• Subsequent operations result in either INF or NaN

Overflow

• With smaller representations, overflow is a bigger concern
• With 32-bit and 64-bit CPUs overflow is uncommon

• Older 8/16 bit CPUs have overflow flags and “add with carry” instructions

• Overflow handling at the HW level is rarely propagated to SW
• Fun Fact

• RISC-V architecture has no ADD with CARRY instruction
• And no carry/overflow/borrow bit in ISA

Saturation

• Saturating math sets the output
value to the maximum representable
value
• Does not just drop bits

• In some cases, this produces
acceptable results

O
ve

rf
lo

w
Sa

tu
ra

tio
n

Saturating Math

• Saturating math assigns largest possible value instead of dropping bits
• With 10-bit signed fixed-point number with 7 integer bits:

62.5 0 1 1 1 1 1 1 . 1 0 0
+ 2.0 1 0 . 0 0 0

- 1.5 1 1 1 1 1 0 1 . 1 0 0

62.5 0 1 1 1 1 1 1 . 1 0 0
 + 2.0 1 0 . 0 0 0

 63.875 0 1 1 1 1 1 1 . 1 1 1

Overflow: Saturation:

REALLY WRONG! Close to correct

Rounding

• Integer adders truncate results:
• In C code: printf(“ %d \n”, 1000 * (99/100));
• Results in “0”

• Assigning integers from any other type truncates low order bits
• Consistent in most programming languages and with bit-vector types in Verilog

• As representation’s range shrinks, truncation error becomes more
significant

Rounding Models
• Many different rounding models
• Rounding will affect results
• All verification models must be

bit-level consistent

Image source: https://en.wikipedia.org/wiki/Rounding

Examples

• Inferencing accelerator
• MNIST handwritten character recognition
• Conversion from float32 (Python) to 10 bit fixed point (Verilog)

• Audio processing
• MFCC calculation (MEL Frequency Coefficient Calculation)

• Fast Fourier transformation of PCM audio to
• Conversion from double (C++) to bespoke 8-bit float (Verilog)

MNIST Handwritten Character Recognition

• “Hello, World!” example for machine learning
• Small, but runs millions of multiply accumulate operations
• Performs many 2d convolutions and vector/matrix multiplications
• Good platform for exploring implementation and optimization methods

1 2 3

Fixed Point Size Analysis
• High-water mark of data and

intermediate values showed
range of values was -37 to 56
• Float32 (+/-1038 is excessive)

• Sensitivity analysis performed
across varying fixed-point
representations

Fixed Point Conversion Results
Integer Bits

Fr
ac

tio
na

l B
its

Area = -78% Speed = 2.4X faster Energy = -92%Computational resources:

Accuracy

MFCC – MEL Frequency Cepstrum Coefficients

• Coverts audio waveform into an audio 2D spectrogram
• “MEL” frequencies correspond to human ear sensitivities
• Computes audio energy in a range of frequencies and their changes over time
• An FFT is computed for each frequency and timeslice

• Spectrograms are used in voice to text, wakewords, and voiceprinting

Mic Audio waveform Spectrogram

Float32 to 8-bit Float
• Fixed Point did not work at all
• Computed average error in

spectrogram values
• Accuracy started dropping at 10 bits

• 8-bit accuracy was good enough
for downstream processing

Area = -89% Prop delay = -62% Power = -84%Computational resources:

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Mean Error

Bit-Width

Verification of Modified Algorithm

• Need to fully verify operators, computational operations
• Also need to verify that algorithm produces correct results

• with modified representation

• Algorithms are likely too large to analytically size representation
• MNIST had > 4 million MAC operations
• MFCC performed 2,000 FFT calculations on input waveform

• Need to run large data sets
• Both real and synthetic data
• Verification will only be as good as the stimuli

Key Verification Points

• High and low watermarks for inputs, output, and intermediate data
• Need to understand largest and smallest values represented at each point in

the algorithm

• When overflows occur
• Need to know anytime operation results in overflow of the representation

• These observations will change with each alteration to the
representation
• Will require multiple runs at different representations
• Must have bit level accuracy matching ultimate RTL implementation

Run in Tandem with Original Algorithm

• Run modified algorithm in parallel with the original algorithm
• Perform on-the-fly comparisons

• Ensure needed accuracy is maintained
• Monitor both outputs and intermediate values

Stimulus

Original
Algorithm

Modified (typed)
Algorithm

Continuous
comparison

Performance Needed

• Algorithms are likely large and complex
• Else would be left in software

• Logic simulation is probably too slow
• Yolo-2 – small object recognition algorithm – at RTL takes ~5 hours 1 inference
• About 6 CPU years for logic simulation of 10,000 inferences

• Raise the abstraction level
• Can run 1,000X faster
• But need to ensure bit level activity of math is identical to intended

implementation

AC Data Types

• Bit accurate C++ library of numeric representations and operators
• Templated typedefs for various representations
• Extensions for bit level manipulation, for hardware operations

• Supports bit level accurate representation of various data formats
• Overloaded operators for all types perform bit level accurate operations
• Easy migration from C++ or other high-level languages

• Supports multiple rounding models and saturating math

http://hlslibs.org

AC Data Types

• Variable sized int - ac_int<size, signedness>;
• Fixed point numbers - ac_fixed<size, integer_bits, signedness>
• Variable sized float - ac_float<size, exponent_size>;

• Bfloat-16 - ac_bfloat<>;

• IEEE float 32 and 64 - ac_ieee_float32<>, ac_ieee_float64<>;
• complex numbers - ac_complex<type>;

Value Range Analysis

• Records high and low watermarks for variables throughout algorithm
• Identifies overflow and underflow points

• Essentially, assertions and monitors in the ac_type classes

• This information enables zeroing in on the correct representation
quickly

Synthesis from C++ for AC types

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC into
technology optimized synthesizable RTL

Catapult
High-Level
Synthesis

Catapult Hight-Level Synthesis

• Optimized for ASIC or FPGA
• Output is VHLD or Verilog

Catapult
HLS

Addition operator

Addition operator

Clock and reset

Architectural Exploration

A
rc
hi
te
ct
ur
e

C
on
st
ra
in
ts

data_t MAC (
 data_t data_in[4],
 coef_t coef_in[4]
) {

 accu_t acc = 0 ;

 for (int i=0;i<4;i++) {
 acc += data_in[i] * coef_in[i] ;
 }
 return acc ;
}

+x

+
x

x

x

x

+

+

User controls implementation
with constraints and pragmas

Verification of RTL against C++

• Compare C++ against RTL with
• Formal equivalency (SLEC)
• Coverage
• Dynamic simulation

Stimulus

Bit accurate C++

Synthesized
Verilog

Score
boarding

and
comparison

Technology Trends
• CPU single thread performance

has stalled
• Performance demands continue

to rise
• More algorithms moving to

hardware

Conclusion

• Using alternative numeric representations when implementing
designs can greatly improve PPA
• Need to carefully migrate from original algorithm to new

representations, then to RTL
• Continuous verification against the prior implementation is essential
• Compare not just results but intermediate values as well

• Must ensure new representation maintains fidelity of the algorithm

Thank you

?? || //

Questions or comments

Russell.Klein@siemens.com
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
http://hlslibs.org

mailto:Russell.Klein@siemens.com
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/

