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Abstract—Nvidia is an undisputed leader in the semiconductor industry with its advanced designs driving various 
market needs in datacenter, gaming, robotics, and artificial intelligence applications. These complexities in the 
applications translate into complex designs that we work on. Handling clock-domain-crossings ahead in the design 
cycle is a common challenge across the industry, and Nvidia designs are no exception here but follow a strict 
methodology to ensure the highest quality of RTL. As the complexity of design is increasing with new feature addition 
or complex algorithm development, the quantum of violations is going out of control for analysis. The fix of these large 
quanta often belongs to some deterministic fixes in constraints or RTL. Analyzing the same kind of structures hidden 
in large quantum is costly and affects the time to market. To address high-bandwidth high throughput designs in 
reporting unsafe clock-domain crossings effectively, we would like to introduce a statistical-based novel methodology 
called "Root-Cause Analysis" aka RCA. Given the intricate nature of clock-domain structures at Nvidia, this 
methodology has the potential to simplify the analysis of potential vulnerabilities at the crossings. It accomplishes this 
by offering upfront suggestions to identify possible root causes. In this paper, we aim to showcase several active cases 
where this tool's features could potentially expedite the signoff timelines. By reducing noise and adopting a non-iterative 
approach, this methodology significantly accelerates the CDC verification process. We attempt to present an evaluation 
study of this methodology using the Meridian CDC tool and present the results obtained from a real SOC design. 
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 I.   INTRODUCTION  

For the contemporary multi-million instance SoCs, having thousands of clock domains has become the norm, and 
using various synchronization mechanisms for the crossings is an integral part of the design cycle. While statically 
verifying synchronization schemes in the design has been made easy by various EDA tools, the SNR can be too 
small, making the cleanup process quite cumbersome. The reason behind this is that all such tools work structurally 
and rely on user constraints to limit the state space for practical analysis. The completeness of constraints cannot be 
assumed and is difficult to finetune to produce optimal results. In the presence of missing or incomplete constraints, 
it is highly difficult to filter out the actual violations from the noise. 

Having said that, the EDA tools also have evolved in recent times to not just report the deficiencies in clock-domain 
crossings but also to provide guidelines for resolving the issues, typically using AI/ML algorithms based on 
statistical and structural design data to provide more actionable suggestions. 

MeridianCDC has been a leading industry-standard clock-domain verification tool for the better part of the last 
decade and has recently introduced a methodology named “Root-Cause Analysis” groups. Given the design 
complexities at Nvidia, this new methodology has the potential to make the analysis easier for our complex clock-
domain structures for potential vulnerabilities at the crossings, which it achieves by providing additional upfront 
suggestions to find the possible root causes. This methodology doesn't just identify the root cause of many of the 
reported violations but can also provide insights to fix them by either adding a suitable constraint or correcting the 
design where necessary. Since this methodology groups violations based on their root cause, the identified fixes 
would be more concise, and provide better coverage overall, in comparison to the incumbent manual process. 
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The paper will attempt to highlight a few real-time cases where the tool’s feature could be used to pull in the signoff 
timelines potentially. 

To evaluate this new feature supported by the MeridianCDC tool, a set of representative designs was identified to 
cover the maximum spectrum of violations seen. In these designs, the analysis groups were reported using the tool, 
and the results were analyzed thoroughly. The evaluation was done qualitatively by analyzing the actionability of 
each of the groups reported by the tool, and quantitatively by mapping the number of root-cause groups reported 
and the corresponding number of violations that get covered per RCG. 

 

II.  TRADITIONAL CDC VERIFICATION METHODOLOGY 

As in any competitive system on chip designs in the industry, our designs consist of multiple clock domains 
operating asynchronously. A challenge we face is that the signals crossing between these domains can breach the 
setup/hold window of the receiving clock, leading to metastability issues. These failures related to metastability 
can be sporadic and difficult to identify, potentially resulting in costly chip re-spins if discovered late in the design 
cycle. To address this, we rely on a tool called Meridian, which helps us detect metastability-related failures at the 
RTL (Register Transfer Level) stage. 

Similar to any other tool, Meridian accepts different inputs, performs parsing, and conducts verification on these 
inputs. This process is illustrated in the first step shown in the diagram, where the tool reads libraries, Verilog 
files, and associated constraints, among others. In the second step marked "Setup analysis," the tool examines user 
specifications (definitions of clocks, resets, constants, inputs, outputs) for correctness, consistency, and 
completeness. The third and final step, referred to as "CDC Structural Analysis," specifically focuses on CDC 
verification. The tool scans the design, identifying structures that do not conform to safe CDC requirements. 

Meridian CDC offers several debugging capabilities, such as an "idebug" GUI, which assists in pinpointing errors 
and reducing the debugging effort. The CDC verification engineer carefully analyzes the results, eliminates false 
violations by updating design constraints or waivers, and then re-runs the tool. This iterative process of running 
the tool and fine-tuning design constraints or waivers continues until satisfactory results are achieved. 

Once the design constraints are stable and the CDC verification results are satisfactory, the engineer moves 
forward to address any identified issues. However, the traditional approach to this process has its drawbacks. It 
involves an iterative and potentially error-prone constraint-tuning process, as well as the complexity of gathering 
relevant design information from geographically dispersed block designers. The inherent delay involved in this 
process may essentially diminish the sheen of using RTL-CDC overall. 

 

Fig-1: Conventional CDC verification method  
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III.  CDC VERIFICATION WITH  ROOT CAUSE GROUPS 

The CDC methodology is undergoing an update to include RCA (Root Cause Analysis) checks enabled by default. 
This enhancement aims to provide better design constraints and minimize undesired CDC violations. The results 
of the RCA checks will be incorporated into the CDC Structural violations, enabling designers to understand the 
impact of unconstrained or misconstrained signals identified by the RCA checks. After analyzing these RCA 
checks, if the designer determines that the reported signals align with the design intent, they can apply appropriate 
constraints. However, if there are real CDC Structural violations associated with the reported signals, a thorough 
review and analysis of the violations are necessary. 

The inclusion of RCA checks offers several benefits,  

1. Reduces the time, cost, and effort required in the CDC verification process significantly.  

2. When a new design undergoes CDC analysis, the RCA checks help expedite the CDC setup time.  

3. The presence of design changes, such as the addition of new clocks or resets, may go unnoticed by the 
CDC verification engineer. RCA checks play a vital role in identifying the relationship between these 
new changes and the pre-existing design elements.  

4. By validating and providing accurate constraints before running the CDC analysis, a significant amount 
of runtime can be saved. This enables the CDC tool to focus more on identifying genuine bugs rather 
than wasting time analyzing false issues. 

 

 Fig-2: SDC setup-based CDC verification method  

  

 

IV.  UNDERSTANDING RCA 

All industrial tools use static technology to generate violation quantum for users. This violation-quantum is 
sometimes noisy which is later found when users debug them one by one. Behind these violations, there are already 
some hidden root causes that can bring down these violations in an effective ballpark. Therefore, we need some 
way to analyze the given set of violations and produce probable root causes.  

The tool proposes a new solution that works using statistical analysis on a given violation set to find possible 
groups having common root causes. This technology proposes multiple potential root causes which users can act 
upon in terms of constraints or RTL fix to bring down a large quantum in the effective count. 
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The proposed solution has multiple checks, we will try to understand one or two to understand the depth that 
probable root cause checks are offering. 

Say we have m asynchronous clocks in design which gives in total clock domain crossings n(T). When the user 
starts its analysis, found that most of the crossings are within one clock pair, say, C1 to C2. The sync crossings 
path covered by (C1, C2) is in total n(C1,C2) such that they have a relationship as mentioned in equation (1), 
where configurable Th is 1%.  

                                                                       n(C1,C2)/n(T) <=   Th                                                               (1) 

In statistical analysis, we figured out that more than Th are completely asynchronous which points to some serious 
problems in one of the following ways 

1. Bug in identifying correct Sync/Async relationship between C1 and C2 by tool 

2. The incorrect relationship defined by set_false_path or set_clock_groups for C1 and C2 

Let's assume user-provided constraints are well understood by the tool i.e., first point 1 above is correct. The 
probable root cause is an incorrect relationship which user-defined because having such a large quantum of async 
crossings is not expected in any design. 

Let's look at other very general RCA which impact the addition of stable/static constraints. Say out of total async 
crossing paths n(T) we have some violations which all have common drivers or driver K fanout to total n(K) flops 
provided bus is considered one. Then signal K is considered stable such that they have a relationship as mentioned 
in equation (2), where configurable Th is 1%. 

                                                                       n(K)/n(T) <=   Th                                                               (2)
  

This is how the feature points to probable root cause hidden in large violation-quantum. In upcoming sections of 
the paper, we will try to study in depth the few interesting scenarios caught by this proposed solution and how to 
save the user's effort by multiple times gain. 

 

 

V.  CASE STUDY 

In order to demonstrate the effectiveness of the RCA checks methodology, we incorporated RCA checks into our 
CDC verification flow. We would like to emphasize the significant benefits we observed as a result of this 
evaluation exercise. 

In one of our designs, we initially encountered a large number of violations, precisely 56,586 violations. To address 
this issue, we enabled root cause checks (RCA checks) and implemented the potential constraint fixes for three 
specific checks: RC1(ignoring RXs having large driver set), RC2(not actual async clocks), and RC3(stable Tx 
having large load set). As a result of these measures, the number of violations reduced by an impressive 86%. 

The implementation of RCA checks proved invaluable in identifying missing constraints on global signals. For 
example, we discovered that a specific mode reset lacked a clock constraint, leading the tool to consider it 
asynchronous. 
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In another case, we uncovered that the outputs of shallow latches within a particular structure could be constrained 
as stable signals. Since this structure was highly repeatable and present in multiple IPs, applying project-level 
constraints allowed us to effectively reduce the violation count across different designs. 

Furthermore, in certain designs, we encountered receiving flops or ports with high fan-in that were deemed 
irrelevant for CDC analysis due to their don't care nature. 

We found the RCA checks to be quite powerful, that they revealed a correlation between multiple designs, since 
designs that are involved are on mobile applications, hence sharing some common design structures. These 
common design structures are pointed out by RCA recommendations to improve constraints around them. 

These findings demonstrate the capabilities of RCA checks in detecting constraint issues, optimizing constraint 
application at different levels (such as project-level constraints), and identifying signals that can be disregarded 
for CDC analysis, ultimately enhancing the efficiency and accuracy of the CDC verification process. 

Without the RCA checks, the initial CDC analysis would have required multiple iterations, involving the analysis 
of each violation category and subsequent design fixes or constraint additions. However, with the aid of RCA, the 
CDC verification engineer only needs to review the signals associated with grouped violations identified in the 
RCA checks. These checks also provide information regarding the impact of these signals. Consequently, the 
verification engineer gains insights into which signals are causing the majority of violations without even 
examining the structural violations. Once the verification engineer validates the signals reported in the RCA 
checks and applies the necessary constraints, only a manageable number of CDC violations remain for review, 
eliminating the need for multiple iterations. This allows the engineer to promptly address CDC errors. The results 
are summarized in Table-1. 

 

 

 

Design CLK Groups 

Design Size: 
eq NAND2 

gates 
in Mil Inst 

Conventional 
CDC Violation 

Count 
RC1 RC2 RC3 

Percentage 
Reduction in 
CDC Errors* 

Design-1 81 3.51 56586 13 6 11 86% 

Design-2 25 0.30 13036 0 1 74 77% 

Design-3 20 3.40 5987 0 0 32 76% 

Design-4 730 20 42850 0 81 162 57% 

Design-5 57 12 12814 0 0 113 56% 
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Design CLK Groups 

Design Size: 
eq NAND2 

gates 
in Mil Inst 

Conventional 
CDC Violation 

Count 
RC1 RC2 RC3 

Percentage 
Reduction in 
CDC Errors* 

Design-6 5 0.02 1130 0 0 3 45% 

Design-7 27 9.59 15836 22 1 42 40% 

Design-8 17 5.71 1165 0 0 6 38% 

Design-9 78 11.40 9475 0 0 15 37% 

Design-10 22 0.35 2380 0 0 5 31% 

Design-11 72 5.29 10006 1 0 5 29% 

*Reduced if suggested recommendations by RCs applied on the design; Suggestions are reviewed initially before 
applying, but are not signed-off by the design team yet. 

Table-1: CDC Violation Reduction with the Proposed RCA Flow 
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Figure-1: Conventional vs. Proposed CDC methodology Violation Count 

 

 

VI. CONCLUSION  

From the case study, the benefits of this methodology are obvious. Root-cause groups are a statistical tool to 
efficiently identify the common root cause of multiple CDC violations reported by the tool and suggest suitable 
and possible fixes for the identified deficiencies. This helps eliminate days spent creating, refining and qualifying 
the CDC setup. The methodology is generic and non-iterative. Noise in CDC results is eliminated mostly and the 
verification engineers are left with real CDC violations and can start fixing CDC results immediately. The 
proposed method accelerates CDC verification closure time and it results in valuable savings of time, effort, and 
costs.  

VII. FUTURE SCOPE  

Root Cause Analysis is a never-ending process. It gets mature and evolves with every learning from new design 
debug. For Nvidia, the obvious next step is to incorporate RCA in the flow and have a reasonable and actionable 
way of providing the set of suggestions from RCA to the designers. The aim is to have RCA as a check which will 
give designers upfront recommendations of probable constraint updates to improve the setup or the RTL. 

For the tool vendor, the feedback from the evaluation adds to the statistical data and helps improve the accuracy 
of RCAs reporting. Based on the actual learnings from this evaluation, RCA will be getting new checks, few are 
as follows: 
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1. Crossing paths that don't converge to primary output even through sequential elements in fanout cone,  
will not have any impact even if metastability is present because it will be pruned off by synthesis engine 
or in the matured state of RTL. 

2. Crossings belong to common debug actions because they all have a common through-node. 

3. Extending to coherency checks which will have the following checks 

a. Identifying vector control which is shared by some N reconverging structure - Possibly global 
control signal which is independent 

b. Reconvergong structure participating in FIFO interface or controls from FIFO participating in 
reconvergence. 

Along with new checks, the plan is to have a better correlation between root causes and crossings and utilize them 
for building a deep learning model on these recommendations with advanced statistical algorithms.  

 

REFERENCES  

[1] Clifford E. Cummings, “Clock Domain Crossing (CDC) Design & Verification Techniques Using System Verilog”, SNUG-2008   

[2] Vishnu C Vimjam and Al Joseph, “Challenges in Verification of Clock Domain Crossings”, DAC knowledge center Article   

[3] Ping Yeung, “Five Steps to Quality CDC Verification”, Mentor Graphics, Advanced Verification White Paper   

[4] “Using the Synopsys Design Constraints”, Application Note v1.9, 2010   

[5] Athaiya, S., Komondoor, R., Kumar, K.N.: Dataflow analysis of asynchronous systems using innite abstract domains (2021) 

[6] Mark Litterick, “Pragmatic Simulation-Based Verification of Clock Domain Crossing and Jitter using System Verilog Assertions”, 
DVCon, 2006 

[7] Chris Kwok, et al, “Using Assertion-Based Verification to Verify Clock Domain Crossing Signals”, DVCon, February 2003 


