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Abstract- The increasing complexity and interconnectedness of System-on-Chip (SOC) designs have introduced new 

challenges in ensuring the security of sensitive assets. SOC architectures involve multiple initiators/masters, such as cores, 
accelerators, and devices, which may not possess equal privileges. Untrustworthy sources can exploit vulnerabilities and 
bypass security mechanisms, posing a significant risk to the protection of assets distributed across the SOC. This paper 
explores the application of formal verification as an effective method to detect and mitigate security risks in hardware 
designs. By verifying that a design satisfies a set of security properties, including confidentiality, integrity, and availability, 
formal verification ensures that the hardware design is secure and free from vulnerabilities. Moreover, it facilitates a shift-
left approach by preventing the introduction of potential vulnerabilities during subsequent design and development stages 
using three pillars of CIA Triad 
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I.   INTRODUCTION 
System-on-Chips (SOCs) security has become an essential part of modern electronic world. In the past decade, the 

field of security has expanded to include the hardware domain. It has become evident that the security of SOCs can 
be compromised through various means, such as side-channel attacks, untrustworthy initiators/devices. These attacks 
target the underlying hardware components of a system and exploit vulnerabilities to gain unauthorized access or 
extract sensitive information. 

Hardware-based attacks in SOCs designs aim to exploit vulnerabilities present in the system and steal assets such 
as configuration and status registers (CSRs), keys, and regions in memory. Such attacks have the potential to 
compromise the confidentiality, integrity, and availability of critical data and transactions. Traditional security 
mechanisms are often insufficient to address the evolving threat landscape, and new approaches are required to 
enhance the security of SOC designs. 

This paper explores the application of formal verification 
(FV) as an effective method for detecting and mitigating 
security risks in hardware designs within SOC architectures. 
Formal verification can be used to verify that a design 
satisfies a set of security properties, such as confidentiality, 
integrity, and availability (as shown in Figure 1). FV is a 
powerful technique which can be thoroughly exploited in the 
field of hardware security to ensure the correctness and 
robustness of hardware designs with respect to security 
properties. 

Through an examination of the role of formal verification 
in hardware security, this paper aims to highlight its 
significance in safeguarding of sensitive assets in SOC 
designs. Furthermore, it discusses the benefits of adopting a 
shift-left approach, where security verification is 
incorporated early in the design process to proactively 
prevent security vulnerabilities from causing functional and 
performance breakdown. 

 
Figure 1: Illustration of CIA Triad 



 
 

II.   FORMAL PROPERTY VERIFICATION FOR HARDWARE SECURITY 
     

Formal verification is a rigorous mathematical technique used to prove the correctness of a design with respect to 
its specifications. Unlike simulation-based methods that rely on test cases, formal verification exhaustively explores 
all possible input combinations and system states to ensure that the design functions as intended, making it idle 
candidate for security verification. By utilizing formal methods, designers can obtain mathematical certainty regarding 
the correctness and behavior of their hardware designs. 

 

 
Figure 2: Components of FV setup and their interactions 

Formal verification setup combines constraints, abstractions, checkers/covers, and reference models to analyze the 
design's behavior and verify its properties as shown in Figure 2. These components are interconnected and influence 
one another. Constraints restrict the exploration space and shape the analysis by defining valid inputs and system 
behaviors. Abstractions help manage complexity by simplifying the design representation while preserving key 
properties. Checkers or coverage properties define the security requirements that the design must meet, and their 
evaluation determines the verification outcome. The reference model serves as a benchmark for comparison and 
evaluation. Together, these components form an integrated approach to formal verification, enabling comprehensive 
analysis of the design's security properties. 

From hardware security verification perspective, constraints play a critical role. Functional FV setup can be re-
used for security verification by carefully tweaking these constraints. Legal constraints that assume protocol-compliant 
inputs can introduce a risk of missing potential security issues. When designing security verification processes, it's 
crucial to consider a broad range of input scenarios, including both compliant and non-compliant inputs, to ensure 
comprehensive analysis. This broader analysis helps detect potential security weaknesses and vulnerabilities that may 
not be evident when focusing solely on compliant inputs. Loosening constraints enables the evaluation of the design's 
response to unexpected or malicious inputs, aiding in early vulnerability detection and proactive mitigation. By 
considering a wider range of input possibilities, formal verification helps uncover security risks that might be missed 
under stricter constraints. Example, header payload always accompanied with data payload may be protocol 
compliant, but it is a strict constraint from security point of view. It also enhances the design's resilience against 
unknown vulnerability attacks by uncovering and addressing them before they are exploited. Overall, loosening 
constraints in formal verification provides a more comprehensive and robust security verification process by exploring 
corner cases beyond legal assumptions. While updating abstractions and reference models for security verification, 
consider security-specific abstractions, incorporate threat modeling, define security properties and assertions. 

In the context of hardware security, formal verification plays a crucial role in verifying a set of security properties. 
These properties encompass three aspects that are mentioned in table below.  

 

Confidentiality 
Ensures that sensitive data is only accessible to authorized parties, preventing 
unauthorized access or leakage 

Integrity 
Guarantees that critical data or transactions remain unaltered and untampered during 
transportation or processing 

Availability 
Ensures that the system remains operational and accessible when needed, preventing 
denial-of-service or disruption attacks 



 
 
 

The current scope of this paper is to talk about these three aspects of verification for security analysis. 

A. Confidentiality: Secure access of CSRs 

Formal verification techniques can be employed to ensure confidentiality in hardware designs. By modelling and 
analysing the flow of information within the system, formal verification can identify potential leakage points or 
unauthorized data accesses. Techniques such as information flow analysis and secure information flow tracking can 
be applied to verify that sensitive data remains protected and inaccessible to unauthorized entities. 

 Confidentiality breaches can occur in various ways within a hardware system. Let's explore different ways in 
which the confidentiality aspect of security can be breached based on table mentioned below: 

 

Cause Effect Risk 

Insecure source or 
destination IDs 

Source or destination IDs are commonly 
used to identify the origin and destination of 
data within a system. If these IDs are 
insecurely implemented or compromised, 
an attacker can manipulate or spoof the IDs. 

By impersonating a trusted source or 
intercepting data intended for a secure 
destination, the attacker can gain 
unauthorized access to confidential 
information  

Critical input exposed to 
the user 

Design flaws or implementation errors can 
make critical input that determines the flow 
of a transaction to be exposed to the user. 
This will cause unauthorized alteration of 
transaction flow 

The user may be able to alter the 
transaction flow, gain unauthorized 
access to sensitive information, or 
perform actions that compromise 
confidentiality. 

Misaligned micro-
architectures  

Hardware systems often employ micro-
architectures to optimize performance. 
However, if the micro-architectures like 
FIFO, state machines are un-synced or not 
properly coordinated, it can create timing 
vulnerabilities 

Exploiting vulnerabilities in the 
decoding process, an attacker can 
manipulate timing operations and 
intercept data at specific stages, 
leading to unauthorized access and 
tampering with sensitive information. 

Bypassing the decoding 
by corrupting critical 
headers/bits 

Decoding mechanisms are responsible for 
interpreting and processing data within a 
transaction. Corruption of critical 
header/bits can bypass decoding process 

This type of attack can lead to the 
exposure of sensitive data or 
unauthorized control over the system. 
 

 

These are just a few examples of how the confidentiality aspect of security can be breached in a hardware system. 
It is important to note that these vulnerabilities should be addressed through robust security measures, such as secure 
hardware design practices, thorough testing, and techniques like encryption and access control. By identifying and 
mitigating these vulnerabilities (as shown in Figure 3), hardware systems can better protect the confidentiality of 
sensitive information and prevent unauthorized access or exposure. 
 

 
Figure 3: Illustration of a hardware attack 



 
 
 
 To mitigate these risks as shown in Figure 3 and protect the confidentiality of sensitive information, identification 
and role attributes for initiators and responders are crucial in a hardware system. These attributes uniquely identify 
entities and specify their roles, enabling secure and controlled access. They help authenticate initiators, enforce 
authorization, and access control, establish secure communication channels, and facilitate accountability and auditing. 
By incorporating these attributes, hardware systems ensure that only authorized entities interact with resources, 
prevent unauthorized access, and maintain system confidentiality. 
 Formal Property Verification (FPV) is highly beneficial for ensuring confidentiality in a hardware system. FPV 
enables the verification of properties related to attribute constraints, which play a crucial role in preserving 
confidentiality. The provided example demonstrates how FPV can be used to enforce confidentiality requirements by 
preventing transactions with incorrect attributes (e.g., source/destination IDs, etc) from being propagated. 
 

 
 

The property (on the left) ensures that the symbolic source port ID (sym_src_port_id, a free variable) does not 
match any of the allowed values of initiators (e.g., SOURCE_CHANNEL_1, SOURCE_CHANNEL_2, etc.). This 
way symbolic source port ID has anything but legal values. The second property verifies that if an outgoing transaction 
is valid (out_valid) and contains a source flit (src_flit_vld), the source flit's source port ID (flit[SRC_MSB:SRC_LSB]) 
should not match the sym_src_port_id. This property ensures that transactions with the incorrect source port ID are 
not allowed to pass through the output interface, thus maintaining the confidentiality of the system 
 In addition to the provided example, other properties can be formulated to validate that filtered transactions, 
based on their attributes, remain unseen on the output interface. These properties help enforce data filtering and 
confidentiality requirements, ensuring that sensitive information is not leaked through the output interface. 

B. Integrity: Accurate and consistent Service 

Integrity is a critical aspect of security that guarantees the accuracy, consistency, and trustworthiness of data and 
systems. Breaching the integrity of a system's security involves unauthorized changes to the completion response of a 
legal transaction, either from successful to unsuccessful or vice versa. Such breaches can have severe consequences 
for the system's reliability and the integrity of its data. If an intruder's illegal transaction manages to change the 
completion response of a legal non-posted transaction from successful to unsuccessful or vice versa, it can lead to the 
manipulation of the service being provided. This can have serious implications for the system's operation and the 
integrity of the data being processed. 

In a typical scenario, a legal non-posted transaction expects a completion response indicating whether the 
transaction was successfully executed or not. This completion response serves as an assurance of the transaction's 
outcome and is crucial for maintaining the integrity of the system. However, if an intruder can maliciously alter the 
completion response of a legal transaction, it can introduce manipulation and compromise the service being provided. 

If the completion response of a successful transaction is changed to unsuccessful, it can falsely indicate a failure 
or error in the transaction. This can lead to incorrect actions being taken based on the erroneous completion response, 
such as reprocessing the transaction or triggering unnecessary alarms. On the other hand, if the completion response 
of an unsuccessful transaction is altered to successful, it can mask the actual failure and provide a false sense of 
success. This can lead to incorrect data being processed, erroneous decisions being made, or unauthorized access being 
granted. The consequences of such manipulation of service can vary depending on the context and the specific system 



 
 
involved. It can range from financial losses, operational disruptions, compromised data integrity, to potential security 
breaches. 

To ensure the integrity of a system, it is essential to deploy both functional correctness properties and data 
correctness measures. These two aspects work hand in hand to maintain the reliability and trustworthiness of the 
system's operations and data. 
 

1 reg tracked_req_in_prog; 
2 always @(posedge clk) begin 
3    if (rst) tracked_req_in_prog <= 'b0;  
4    else if (complt_rsp &  
5             !no_older_req_pnding)    
6        tracked_req_in_prog <= 'b0; 
7    else if (tracked_req_rcvd)  
8       tracked_req_in_prog <= ‘b1; 
9 end 

1 correct_complt_rsp_check: assert property ( 
2 tracked_req_in_prog |-> 
3 succ_complt_rsp == cfg_reg_access_allowed 
4 ); 
5 
6 succ_complt_rsp_data_check:  
7 assert property ( 
8 tracked_req_in_prog && succ_complt_rsp |-> 
9 complt_rsp_data == read_reg_data 
10 ); 

 
Functionality correctness checkers are responsible for verifying the legality and adherence to specific requirements 

of transactions before allowing them to be completed or generating a completion response. For example, in the case 
of checking read/write operations of a configuration register, a functionality correctness checker examines the 
attributes decoded from the transaction. It verifies whether the transaction is legal according to these attributes and 
determines if the read/write operation is permitted or required (cfg_reg_access_allowed). If the transaction meets these 
criteria, a successful completion response is sent; otherwise, a completion response indicating failure should be 
generated. 

A data correctness checker plays a crucial role in ensuring the integrity and reliability of data within a system. This 
type of checker verifies the correctness and consistency of data across different components or modules, aiming to 
identify any inconsistencies or errors that may arise. When checking the correctness of data read from a configuration 
register, a data correctness checker compares the completion data sent with the read data. If the configuration register 
was read, the checker compares the two sets of data to ensure they match. A mismatch between the completion data 
and the read data indicates a potential error or inconsistency within the system. 

By combining functional correctness properties and data correctness measures, the system can achieve a 
comprehensive approach to integrity. Functional correctness properties address the proper execution of transactions 
and operations, ensuring that they meet specified criteria and adhere to the system's intended behavior. Data 
correctness measures, on the other hand, validate the accuracy and consistency of the data, preventing incorrect or 
inconsistent information from compromising the system's integrity. 

C. Availability: Hang free system (No DoS) 

Hang in a pipeline can have an impact on the availability aspect of security. If a stage in the pipeline hangs or 
becomes stuck, it can cause a bottleneck in the pipeline and prevent the system from processing any further data. This 
can lead to a denial of service (DoS) attack, where an attacker intentionally causes the pipeline to hang or becomes 
stuck, causing the system to become unavailable. 

When the IP detects that a transaction is corrupt, there are different possibilities for how it handles the situation. 
Let's explore each case: 
 IP Discards the Transaction or Raises an Error:  

If the IP determines that the transaction is corrupt, it may choose to discard the transaction and free the pipeline 
without raising an error. This approach assumes that the transaction is invalid or not compliant with the expected 
protocol, and thus, it is safe to ignore it. However, it's important to note that discarding the transaction without 
raising an error may not be sufficient in all cases, especially when considering the overall correctness and integrity 
of the system. 

 Non-Posted Transaction Requires Completion Response: 
In the case of a non-posted transaction, which typically requires a completion response, it becomes crucial to 
handle the situation appropriately. If the corrupted transaction is non-posted, it is necessary to send an 



 
 

unsuccessful completion response. Failing to do so could result in the system architecture hanging, as completion 
responses are required for non-posted transactions to maintain the flow and integrity of the system. 

 Sending Incorrect Number of Completion Responses: 
If the IP accidentally sends two completion responses instead of one for a transaction, it violates the "one request-
one response" principle. This can lead to confusion and potential issues in the system. Ideally, the IP should only 
send a single completion response for each transaction to maintain the expected behavior and integrity of the 
system. 

In summary, when dealing with corrupt transactions, it is essential for the IP to handle them appropriately based 
on the transaction type and compliance with the protocol. This includes discarding or raising an error for corrupt 
transactions, ensuring that non-posted transactions receive the required completion response, and adhering to the 
principle of one request-one response to maintain the expected behavior and integrity of the system 

Formal verification can also be used to detect potential pipeline hangs and ensure the correctness of the pipeline 
design. One approach to avoid DoS by illegal transactions is to ensure that an unsuccessful completion is sent out 
within a finite number of cycles. This can help prevent potential security issues that may arise from allowing illegal 
transactions to continue processing in the system.  

To ensure this safety correctness approach, the system can include a mechanism that detects illegal transactions as 
they are received and triggers a counter in presence of non-zero illegal transactions in system, stalls in case of external 
dependency and finishes when unsuccessful completion is sent. The maximum number of cycles “MAX_COUNT” 
for any transaction to go out is calculated based on the microarchitecture and specification of design, not based on the 
implementation. 

To summarize, this approach consists of counter which has start, stall and finish conditions. Here’s the 
implementation of counter on left side of  below table: 

 
1 reg [COUNT_W:0] count; 
2 always @(posedge clk) begin 
3    if (rst) count <= 'b0;  
4    else if (finish) count <= 'b0; 
5    else if (stall && (|count))  
6       count <= count; 
7    else if (|count)  
8       count <= count + 1'b1; 
9    else if (start && !(|count))  
10      count <= 'b1;  
11 end 

1 count_must_not_cross_max:  
2 assert property ( 
3    @(posedge clk) disable iff (rst)  
4    count <= MAX_COUNT 
5 ); 
6 
7 start_condition_is_met:  
8 cover property ( 
9    @(posedge clk) disable iff (rst) 
10   start 
11 ); 

 
The associated assertion to ensure forward progress is in the above code snippet. The assertion ensures that counter 
never crosses maximum value. The property misses an antecedent so if because of any over-constraint the design does 
not receive start condition then for this case the assertion will not fail. To check this condition of vacuous pass, a cover 
property is added. The above cover property checks for start condition, whether the required input scenario is getting 
generated or not. The assertion and cover together make sure that required inputs are getting properly generated and 
getting propagated outside within finite cycles. 
 To ensure "one request-one response" principle, it is important to ensure that the number of completion responses 
sent is never more than the number of non-posted requests received. This ensures that every completion response is 
associated with a valid transaction and prevents spurious completion responses from being generated as shown in 
below code snippet. 
 

 



 
 
 
 

III.   CASE STUDY: 

A. Design Details 

 
Figure 4: Illustration of working of targeted IP 

The IP mentioned (as shown in Figure 4) is responsible for integrating different subsystem IPs within a System-
on-Chip (SOC) and providing a unified modular interface. It manages interactions with these subsystem IPs for power 
and reset management purposes. When a transaction is received by the IP, it examines the source of the transaction 
and its attributes to determine the appropriate destination within the SOC. The IP distinguishes between different 
flows, such as power management flows, reset management flows, config registers, and static registers.  

For power and reset management, the IP directs the transaction to the corresponding flow or power manager 
responsible for controlling the power states or handling reset operations of the subsystem IPs. This ensures that power 
and reset management within the SOC is properly coordinated and controlled. On the other hand, for transactions 
related to config registers and static registers, the IP routes the transaction to the appropriate modules (CSRs) 
responsible for handling these registers. This allows for the configuration and control of various settings within the 
subsystem IPs.  

B. Bug Example 

Figure 5 illustrates a specific bug related to the manipulation of service that was detected through Formal Property 
Verification (FPV). In this scenario, the legal 
non-posted transaction was supposed to get a 
successful completion response, but credit 
was unavailable. In a meantime, an 
illegal/corrupt posted transaction was 
received that was correctly decoded by the 
system and an error flag was raised due to 
corruption. Once the required credits became 
available, in the subsequent cycle, the 
completion (complt_rsp) was asserted. 
However, in this case, the successful field of 
the completion response got de-asserted due to 
the presence of the posted error (p_err). 

This bug highlights a potential 
vulnerability in the system where a corrupted 
transaction can manipulate the service by 
causing errors in the completion response. The 
FPV technique was instrumental in detecting 
this bug by verifying the expected behaviour 
of the system and identifying any violations 
of specified properties. 
 

Figure 5: Illustration of manipulation of service 



 
 
C. Timelines 

 
Three months to catch first security failure might sound 
surprising but that time was devoted in creation of FV 
setup which helped us to catch functional issues in 
DUT as shown in Figure 6. Thereafter the same setup 
was utilized to catch security issues seeing the 
significance of the IP. We were able to find 3 DoS 
related bugs by 4th month and 2 CR access related 
issues after 2 quarters of effort and 1 service 
manipulation by the end of 3rd quarter. 
 
 

D. Results 

The Transaction Agent (TA) in the system was susceptible to several 
vulnerabilities that can compromise security and lead to various issues: 
 

1. Unsecure Access to CRs: Transaction Agent (TA) claims 
transactions without security attributes, allows the attackers to 
modify/access Control/Status Registers (CSRs) (2 vulnerabilities) 

2. Denial of Service/ Hang: TA fails to check header containing 
security attributes for malformed transaction, exposes TA to 
attackers for create hangs (3 vulnerabilities) 

3. Manipulation of Service: TA unable to ignore malformed 
transactions appropriately, allows attackers to corrupt successful 
responses by injecting malformed transactions (1 vulnerability) 

 
To summarize our result, we were able to identify and unearth issues related 
to both integrity and availability aspect of security along with ensuring 
confidentiality by deploying FPV on a security critical block. FPV provides 
distinct advantage over security path verification (SPV) when it comes to these two aspects (integrity and availability). 
In this security critical block, we were able to identify 21 issues out of which 7 were functional and 14 were security 
issues as shown in Figure 7. 

IV.   CONCLUSION 

Usually when security of an IP is checked, the entire approach focuses on confidentiality; integrity and availability 
of system gets ignored. FPV provides this advantage to check them all at once. We have proven that instead of writing 
separate security properties, same functional properties could be exploited to verify security leaks by loosening the 
constraints. This way the formal setup created to functionally verify hardware components like processors, memory 
and input/output devices could be re-used to verify security leaks with minimal effort. 

If an IP is security critical, then formal verification should be used to check not only functional and performance 
aspect but also security. Formal verification is an effective method for detecting and mitigating security risks in 
hardware designs. By verifying that a design satisfies a set of security/functional properties, formal verification can 
help ensure that a hardware design is secure and free from vulnerabilities and thus achieve shift-left. 
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Figure 6: Timeline of bugs caught 

Figure 7: Illustration of total bugs caught 


